Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (8): 1614-1620    DOI: 10.3866/PKU.WHXB201704181
论文     
可用作便携式电源的高性能直接碳固体氧化物燃料电池组
王晓强.1,刘江.1,*(),谢永敏.1,2,蔡位子.1,3,张亚鹏.1,周倩.1,于方永.1,4,刘美林.1,5
1 华南理工大学环境与能源学院新能源研究所,广州510006
2 江西理工大学冶金与化学学院,江西赣州3410003
3 香港理工大学建筑与房地产学院,香港999077
4 山东理工大学化学工程学院,山东淄博255000
5 美国佐治亚理工学院材料科学与工程系,亚特兰大GA30332-0245,美国
A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications
Xiao-Qiang. WANG1,Jiang. LIU1,*(),Yong-Min. XIE1,2,Wei-Zi. CAI1,3,Ya-Peng. ZHANG1,Qian. ZHOU1,Fang-Yong. YU1,4,Mei-Lin. LIU1,5
1 New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
2 Institute of Metallurgy and Chemical Industry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
3 Department of Building and Real Estate, Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
4 Institute of Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong Province, P. R. China
5 School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245, USA
 全文: PDF(1361 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

报道了一种直接碳固体氧化物燃料电池(DC-SOFC)电池组。该电池组由3个单节管式电池串接而成。为使电池组能够承载更多的碳,阳极制备在管状电池的外壁。此三节电池组直接以碳为燃料,空气中的氧气为氧化剂运行。该电池组的有效面积为10.2 cm2,以17 g负载5%(w)Fe的活性炭为燃料,800℃下的功率为4.1 W。电池组以1 A的恒电流放电19 h,放电容量为19 A·h,释放出31.6 W·h的电能。这种高容量的DC-SOFC可开发成便携式电源加以应用。

关键词: 固体氧化物燃料电池碳燃料锥管串接电池组碳空气电池便携式应用装置    
Abstract:

A direct carbon solid oxide fuel cell (DC-SOFC) stack was prepared with 3 tubular cells electrically connected in series. To increase carbon storage in the stack, the anode was fabricated outside the tubular cells so that carbon fuel can be loaded at the exterior of the stack, which is more spacious than the interior. The 3-cell-stack is operated directly with carbon as the fuel and oxygen in ambient air as the oxidant. With a total effective area of 10.2 cm2 and a 5% (w) Fe-loaded activated carbon fuel of 17 g, the stack reveals a peak power of 4.1 W at 800℃. The stack discharged at a constant current of 1.0 A for 19 h, giving a charge capacity of 19 A·h and an energy capacity of 31.6 W·h, which are much higher than those of a similar stack with anode on the inside and carbon loaded at the interior. The high capacity of our DC-SOFC opens up potential applications in portable devices.

Key words: Solid oxide fuel cell    Carbon fuel    Segmented-in-series stack    Carbon-air battery    Portable application
收稿日期: 2017-02-17 出版日期: 2017-04-18
中图分类号:  O647  
基金资助: 国家自然科学基金(21276097);国家自然科学基金(21567008);国家自然科学基金(21263005);广东省公共研究与能力建设专项资金(2014A010106008);广东省创新企业团队项目(2014ZT05N200);广东省优秀博士论文项目资助
通讯作者: 刘江.     E-mail: jiangliu@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王晓强.
刘江.
谢永敏.
蔡位子.
张亚鹏.
周倩.
于方永.
刘美林.

引用本文:

王晓强.,刘江.,谢永敏.,蔡位子.,张亚鹏.,周倩.,于方永.,刘美林.. 可用作便携式电源的高性能直接碳固体氧化物燃料电池组[J]. 物理化学学报, 2017, 33(8): 1614-1620.

Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications. Acta Physico-Chimica Sinca, 2017, 33(8): 1614-1620.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201704181        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I8/1614

Fig 1  Schematic diagram of the 3-cell-stacks of DC-SOFC system with carbon fuel inside (a) and outside (b) of stack.
Fig 2  SEM images of cross section of the as prepared SOFC with YSZ electrolyte and Ag-GDC.
Fig 3  Output performances (a) and impedance spectra at open circuit voltage (b) of a single SOFC operated with humidified hydrogen (3% (φ) H2O at 25 ℃) as fuel and ambient air as oxidant.
Fig 4  Performances of the tubular 3-cell-stacks of DC-SOFC operated at 800 ℃, with carbon fuel inside (3 g) and outside (17 g) of the stack, respectively.
Fig 5  Comparison of performance of a single SOFC operated with hydrogen fuel inside (50 mL?min-1) and outside (50 mL?min-1) of the cell, respectively, at 800 ℃.
Fig 6  Discharging performance of the 3-cell-stack operated at 800 ℃ with 1 A current, respectively with carbon fuel in the interior and exterior.
DC-SOFC stackCarbon filled/gDischarging time/hDischarging capacity/(A·h)Energy capacity/(W·h)
with interior carbon (Si)33.53.56.9
with exterior carbon (Se)17191931.6
ratio of values of Si to Se5.65.45.44.6
Table 1  Selected data of the stacks DC-SOFC stack
1 Cao D. ; Sun Y. ; Wang G. J. Power Sources 2007, 167, 250.
doi: 10.1016/j.jpowsour.2007.02.034
2 Nakagawa N. ; Ishida M. Ind. Eng. Chem. Res. 1988, 27, 1181.
doi: 10.1021/ie00079a016
3 Tang Y. B. ; Liu J. Int. J. Hydrog. Energy 2010, 35, 11188.
doi: 10.1016/j.ijhydene.2010.07.068
4 Bai Y. H. ; Liu Y. ; Tang Y. B. ; Xie Y. M. ; Liu J. Int. J. Hydrog. Energy 2011, 36, 9189.
doi: 10.1016/j.ijhydene.2011.04.171
5 Liu, J. ; Liu, Y. ; Tang, Y. B. ; Bai, Y. H. A Direct Carbon Solid OxideFuel Cell Power System. CN Patent: ZL201110008698. 8, 2013.
6 Yang B. B. ; Ran R. ; Zhong Y. J. ; Su C. ; Moses O. T% Shao Z. P. Angew. Chem. Int. Edit. 2015, 54, 1.
doi: 10.1002/ange.201411039
7 Zhou W. ; Jiao Y. ; Li S. D. ; Shao Z. P. ChemElectroChem 2016, 3 (2), 193.
doi: 10.1002/celc.201500420
8 Lee A. C. ; Mitchell R. E. ; Gür T. M. J. Power Sources 2009, 194, 774.
doi: 10.1016/j.jpowsour.2009.05.039
9 Li C. ; Shi Y. X. ; Cai N. S. J. Power Sources 2010, 195, 4660.
doi: 10.1016/j.jpowsour.2010.01.083
10 Xu X. Y. ; Zhou W. ; Liang F. C. ; Zhu Z. H. Appl. Energy 2013, 108, 402.
doi: 10.1016/j.apenergy.2013.03.053
11 Jayakumar A. ; Küngas R.S. R. ; Javadekar A. ; Buttrey D. J. ; Vohs J. M. Energy Environ. Sci. 2011, 4, 4133.
doi: 10.1039/C1EE01863A
12 Xu X. Y. ; Zhou W. ; Zhu Z. H. Ind. Eng. Chem. Res. 2013, 52 (50), 17927.
doi: 10.1021/ie403164c
13 Zecevic S. ; Patton E. M. ; Parhami P. Carbon 2004, 42, 1983.
doi: 10.1016/j.carbon.2004.03.036
14 Cooper J. F. ; Selman R. ECS Trans. 2009, 19, 15.
doi: 10.1016/0950-4230(95)00057-7
15 Xie Y. M. ; Tang Y. B. Liu J. J. Solid State Electr. 2013, 17, 121.
doi: 10.1007/s10008-012-1866-5
16 Rady A.C. ; Giddey S. ; Badwal S. P. ; Ladewig B. P. ; Bhattacharya S. Energy Fuels 2012, 26, 1471.
doi: 10.1021/ef201694y
17 Gür T. M. Chem. Rev. 2013, 113, 6179.
doi: 10.1021/cr400072b
18 Tang Y. B. ; Liu J. ; Sui J. ECS Trans. 2009, 25, 1109.
doi: 10.1149/1.3205638
19 Tang Y. B. ; Liu J. Acta Phys. -Chim. Sin. 2010, 26 (5), 1191.
doi: 10.3866/PKU.WHXB20100502
唐玉宝.; 刘江.. 物理化学学报, 2010, 26 (5), 1191.
doi: 10.3866/PKU.WHXB20100502
20 Liu R. Z. ; Zhao C. H. ; Li J. L. ; Zeng F. R. ; Wang S. R. J. Power Sources 2010, 195, 480.
doi: 10.1016/j.jpowsour.2009.07.032
21 Zhang L. ; Xiao J. ; Xie Y. M. ; Tang Y. B. ; Liu J. ; Liu M. L. J. Alloy. Compd. 2014, 608, 272.
doi: 10.1016/j.jallcom.2014.04.154
22 Cai W. Z. ; Zhou Q. ; Xie Y. M. ; Liu J. Fuel 2015, 159, 887.
doi: 10.1016/j.fuel.2015.07.030
23 Yu F. Y. ; Zhang Y. P. ; Yu L. ; Cai W. Z. ; Yuan L. L. ; Liu J. ; Liu M. L. Int. J. Hydrog. Energy 2016, 41, 9048.
doi: 10.1016/j.ijhydene.2016.04.063
24 Xie Y. M. ; Cai W. Z. ; Xiao J. ; Tang Y. B. ; Liu J. ; Liu M. L. J. Power Sources 2015, 277, 1.
doi: 10.1016/j.jpowsour.2014.12.016
25 Rady A. C. ; Giddey S. ; Kulkarni A. ; Badwal S. P. S. ; Bhattacharya S. ; Ladewig B. P. Appl. Energy 2014, 120, 56.
doi: 10.1016/j.apenergy.2014.01.046
26 Dudek M. ; Tomczyk P. ; Socha R. ; Hamaguchi M. Int. J. Hydrog. Energy 2014, 39, 12386.
doi: 10.1016/j.ijhydene.2014.04.057
27 Zhu X. B. ; Li Y. Q. ; Lü Z. Int. J. Hydrog. Energy 2016, 41, 5057.
doi: 10.1016/j.ijhydene.2016.01.105
28 Zhou Q. ; Cai W. Z. ; Zhang Y. P. ; Liu J. ; Yuan L. L. ; Yu F. Y. ; Wang X. Q. ; Liu M. L. Biomass Bioenergy 2016, 91, 250.
doi: 10.1016/j.biombioe.2016.05.036
29 Cai W. Z. ; Zhou Q. ; Xie Y. M. ; Liu J. ; Long G. H. ; Cheng S. ; Liu M. L. Appl. Energy 2016, 179, 1232.
doi: 10.1016/j.apenergy.2016.07.068
30 Xu H. R. ; Chen B. ; Liu J. ; Ni M. Appl. Energy 2016, 178, 353.
doi: 10.1016/j.apenergy.2016.06.064
31 Bai Y. H. ; Liu J. ; Gao H. B. J. Alloy. Compd. 2009, 480, 554.
doi: 10.1016/j.jallcom.2009.01.089
32 Liu, J. ; Su, W. H. ; Lü, Z. ; Ji, Y. ; Pei, L. ; Liu, W. ; He, T. M. A RapidSealing Method for Solid Oxide Fuel Cell Using Metal Conductive Adhesive. CN Patent: ZL 02133049. 2. 2004.
[1] 殷金玲, 刘佳, 温青, 王贵领, 曹殿学. 磷钼酸作为低温碳燃料电池的碳间接电氧化介质[J]. 物理化学学报, 2017, 33(2): 370-376.
[2] 谢永敏, 王晓强, 刘江, 余长林. 管式电解质支撑型直接碳固体氧化物燃料电池的浸渍法制备及电性能[J]. 物理化学学报, 2017, 33(2): 386-392.
[3] 余亮, 于方永, 苑莉莉, 蔡位子, 刘江, 杨成浩, 刘美林. 银基陶瓷复合电极的电性能及其在固体氧化物燃料电池中的应用[J]. 物理化学学报, 2016, 32(2): 503-509.
[4] 付召明, 王明阳, 张岩星, 张娜, 杨宗献. 第一性原理研究由金属镍和钇稳定的氧化锆所形成的三相边界微观结构[J]. 物理化学学报, 2014, 30(6): 1055-1060.
[5] 刘丹丹, 谢永敏, 刘江, 王金霞. NiO-YSZ-石墨水系浆料的研制及其在注浆成型制备固体氧化物燃料电池中的应用[J]. 物理化学学报, 2014, 30(2): 331-337.
[6] 胡智, 黄晓巍, 陈杨辉. EDTA-甘氨酸法制备SmBaCo2O5+δ阴极材料及其性能[J]. 物理化学学报, 2013, 29(12): 2585-2591.
[7] 孟秀霞, 宫勋, 杨乃涛, 谭小耀, 马紫峰. 梯度Cu-CeO2-Ni-YSZ复合阳极直接甲烷SOFC的制备与性能[J]. 物理化学学报, 2013, 29(08): 1719-1726.
[8] 覃国恒, 黄晓巍, 胡智. LaAlO3基电解质与阳极材料的化学相容性及电化学性能[J]. 物理化学学报, 2013, 29(02): 311-318.
[9] 李强, 赵辉, 江瑞, 郭力帆. 中温固体氧化物燃料电池La1.6Sr0.4Ni1-xCuxO4阴极材料的制备及电化学性能[J]. 物理化学学报, 2012, 28(09): 2065-2070.
[10] 杨俊芳, 程继贵, 樊玉萌, 王睿, 高建峰. 中温固体氧化物燃料电池Pr1.2Sr0.8NiO4阴极材料的制备、结构和性能[J]. 物理化学学报, 2012, 28(01): 95-99.
[11] 唐玉宝, 刘江. 以活性炭为燃料的固体氧化物燃料电池[J]. 物理化学学报, 2010, 26(05): 1191-1194.
[12] 宗卫正, 朱永法. 共压直接成型法制备单腔体固体氧化物燃料电池[J]. 物理化学学报, 2010, 26(04): 827-832.
[13] 雷泽, 朱庆山, 韩敏芳. Cu-CeO2基阳极直接甲烷SOFC的制备及其性能[J]. 物理化学学报, 2010, 26(03): 583-588.
[14] 贺琼;王世忠. LSGMC5含量对于二甲醚燃料电池复合Ni-Fe阳极性能的影响[J]. 物理化学学报, 2007, 23(04): 473-478.
[15] 雷泽;朱庆山 . 纳米La0.6Sr0.4Co0.2Fe0.8O3-δ阴极粉体的溶液燃烧法合成与性能表征[J]. 物理化学学报, 2007, 23(02): 232-236.