Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2064-2071    DOI: 10.3866/PKU.WHXB201705103
论文     
制备方法对Nd2O3上过氧物种光诱导生成的影响
吴倩,翁维正*(),刘春丽,黄传敬,夏文生,万惠霖*()
Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3
Qian WU,Wei-Zheng WENG*(),Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN*()
 全文: PDF(1553 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

分别采用水解、水热和燃烧法制备了三种主要物相均为立方Nd2O3的样品。以325 nm激光为激发源,在室温和空气气氛下对上述样品上过氧物种的光诱导生成情况进行了比较考察。经Raman光谱仪的激光束照射后,三种样品上均可检测到过氧物种的生成,但燃烧法制备的样品上过氧的生成速率显著大于其他两种样品。O2-和CO2-TPD(程序升温脱附)的表征结果表明,与水解和水热法制备的立方Nd2O3相比,燃烧法制备的样品表面含有更多的低配位晶格氧物种,晶格氧的碱性也更强,因而更有利于在光诱导下与分子氧反应生成过氧物种。

关键词: 氧化钕制备方法光诱导反应过氧物种晶格氧    
Abstract:

Three Nd2O3 samples with cubic phase being the main component phase, denoted as Nd2O3-H, Nd2O3-HT, and Nd2O3-C, were synthesized by hydrolysis, hydrothermal, and combustion methods, respectively. A comparative study of the photo-induced formation of peroxide species on the three Nd2O3 samples was carried out using Raman spectroscopy with a 325 nm laser as the excitation source. After irradiation with the laser of the Raman spectrometer at room temperature in air, peroxide species was detected in all Nd2O3 samples. However, the rate of peroxide formation over Nd2O3-C was much greater than that over the other two samples. This observation can be explained by the differences in the structure and basicity of the surface lattice oxygen (O2-) species of the samples. As evidenced by the results of O2-and CO2-temperature-programmed desorption (TPD) characterizations, the Nd2O3-C sample contains greater number of surface lattice oxygen (O2-) species with low coordination numbers than the other two samples. Moreover, the basicity of the surface O2- species in Nd2O3-C is stronger than that in the Nd2O3-H and Nd2O3-HT samples. Both these factors are in favor of the reaction of lattice oxygen with molecular oxygen to generate peroxide species under photo irradiation.

Key words: Nd2O3    Preparation method    Photo-induced    Peroxide species    Lattice oxygen
收稿日期: 2017-02-27 出版日期: 2017-05-10
中图分类号:  O647  
基金资助: 国家重点基础研究发展规划项目(973)(2013CB933102);国家自然科学基金(21173173);国家自然科学基金(21473144);教育部创新研究团队项目(IRT_14R31)
通讯作者: 翁维正,万惠霖     E-mail: wzweng@xmu.edu.cn;hlwan@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴倩
翁维正
刘春丽
黄传敬
夏文生
万惠霖

引用本文:

吴倩,翁维正,刘春丽,黄传敬,夏文生,万惠霖. 制备方法对Nd2O3上过氧物种光诱导生成的影响[J]. 物理化学学报, 2017, 33(10): 2064-2071, 10.3866/PKU.WHXB201705103

Qian WU,Wei-Zheng WENG,Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3. Acta Phys. -Chim. Sin., 2017, 33(10): 2064-2071, 10.3866/PKU.WHXB201705103.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705103        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2064

图1  (a)水解(Nd2O3-H)、(b)水热(Nd2O3-HT)和(c)燃烧(Nd2O3-C)法制备的Nd2O3在室温和空气中用325 nm (5.5 mW)激光照射后过氧物种生成的Raman谱图以及(d)各样品上833与336 cm-1谱带强度比(I833/I336)随光照时间的变化
Sample ABET/(m2·g-1) Pore size/nm
Nd2O3-H 6.7 14.0
Nd2O3-HT 13.6 19.8
Nd2O3-C 9.3 17.8
表1  水解(Nd2O3-H)、水热(Nd2O3-HT)和燃烧(Nd2O3-C)法制备的Nd2O3的比表面积(ABET)
图2  解(Nd2O3-H)、水热(Nd2O3-HT)和燃烧(Nd2O3-C)法制备的Nd2O3的XRD图
图3  (a)水解、(b)水热和(c)燃烧法制备的Nd2O3的Raman光谱
图4  (a)水解、(b)水热和(c)燃烧法制备的Nd2O3的SEM照片
图5  水解(Nd2O3-H)、水热(Nd2O3-HT)和燃烧(Nd2O3-C)法制备的Nd2O3的CO2-TPD图
图6  水解(Nd2O3-H)、水热(Nd2O3-HT)和燃烧(Nd2O3-C)法制备的Nd2O3的O2-TPD图
1 Panov G. I. ; Dubkov K. A. ; Starokon E. V. Catal. Today 2006, 117 (1), 148.
doi: 10.1016/j.cattod.2006.05.019
2 Guo Z. ; Liu B. ; Zhang Q. ; Deng W. ; Wang Y. ; Yang Y. Chem. Soc. Rev. 2014, 43 (10), 3480.
doi: 10.1039/c3cs60282f
3 Weng W. Z. ; Wan H. L. ; Li J. M. ; Cao Z. X. Angew. Chem. Int. Ed. 2004, 43 (8), 975.
doi: 10.1002/anie.200351706
4 Jing X. L. ; Chen Q. C. ; He C. ; Zhu X. Q. ; Weng W. Z. ; Xia W. S. ; Wan H. L. Phys. Chem. Chem. Phys. 2012, 14 (19), 6898.
doi: 10.1039/c2cp40086c
5 Jing X. L. ; She W. Y. ; Weng W. Z. ; Li J. M. ; Xia W. S. ; Wan H. L. Chin. J. Catal. 2014, 35 (8), 1385.
doi: 10.1016/S1872-2067(14)60153-4
景孝廉; 佘雯瑜; 翁维正; 李建梅; 夏文生; 万惠霖. 催化学报, 2014, 35 (8), 1385.
doi: 10.1016/S1872-2067(14)60153-4
6 Li J. M. ; Jing X. L. ; Weng W. Z. ; Chang Z. Y. ; An D. L. ; Xia W. S. ; Wan H. L. Scientia Sinica Chimica 2014, 44 (12), 1931.
doi: 10.1360/N032014-00222
李建梅; 景孝廉; 翁维正; 常泽英; 安冬丽; 夏文生; 万惠霖. 中国科学:化学, 2014, 44 (12), 1931.
doi: 10.1360/N032014-00222
7 Jing X. L. ; She W. Y. ; Li J. M. ; Chen Q. C. ; Weng W. Z. ; An D. L. ; Wan H. L. Chem. Asian J. 2015, 10 (10), 2162.
doi: 10.1002/asia.201500312
8 Bazzi R. ; Flores-Gonzalez M. A. ; Louis C. ; Lebbou K. ; Dujardin C. ; Brenier A. ; Zhang W. ; Tillement O. ; Bernstein E. ; Perriat P. J. Lumin. 2003, 102-103, 445.
doi: 10.1016/S0022-2313(02)00588-4
9 Qian H. ; Lin G. ; Zhang Y. ; Gunawan P. ; Xu R. Nanotechnology 2007, 18 (35), 355602.
doi: 10.1088/0957-4484/18/35/355602
10 Zawadzki M. ; Kepinski L. J. Alloys Compd. 2004, 380 (1), 255.
doi: 10.1016/j.jallcom.2004.03.053
11 Zeng W. W. ; Huang K. L. ; Yang Y. P. ; Liu S. Q. ; Liu R. S. Acta Phys. -Chim. Sin. 2008, 24 (2), 263.
doi: 10.3866/PKU.WHXB20080214
曾雯雯; 黄可龙; 杨幼平; 刘素琴; 刘人生. 物理化学学报, 2008, 24 (2), 263.
doi: 10.3866/PKU.WHXB20080214
12 Kepinski L. ; Zawadzki M. ; Mista W. Solid State Sci. 2004, 6 (12), 1327.
doi: 10.1016/j.solidstatesciences.2004.07.003
13 Hayashi H. ; Hakuta Y. Mater. 2010, 3 (7), 3794.
doi: 10.3390/ma3073794
14 Hu H. F. ; He T. Acta Phys. -Chim. Sin. 2016, 32 (2), 543.
doi: 10.3866/PKU.WHXB201511194
胡海峰; 贺涛. 物理化学学报, 2016, 32 (2), 543.
doi: 10.3866/PKU.WHXB201511194
15 Chavan S. V. ; Sastry P. U. M. ; Tyagi A. K. J. Alloys Compd. 2008, 456 (1), 51.
doi: 10.1016/j.jallcom.2007.02.019
16 Umesh B. ; Eraiah B. ; Nagabhushana H. ; Nagabhushana B.M. ; Nagaraja G. ; Shivakumara C. ; Chakradhar R. P. S. J. Alloys Compd. 2011, 509 (4), 1146.
doi: 10.1016/j.jallcom.2010.09.143
17 Yu R. B. ; Yu K. H. ; Wei W. ; Xu X. X. ; Qiu X. M. ; Liu S. ; Huang W. ; Tang G. ; Ford H. ; Peng B. Adv. Mater. 2007, 19 (6), 838.
doi: 10.1002/adma.200600936
18 Sreethawong T. ; Chavadej S. ; Ngamsinlapasathian S. ; Yoshikawa S. Solid State Sci. 2008, 10 (1), 20.
doi: 10.1016/j.solidstatesciences.2007.08.010
19 Duhan S. ; Aghamkar P. Acta Phys. Pol. A 2008, 113 (6), 1671.
doi: 10.12693/APhysPolA.113.1671
20 Shafer M. W. ; Roy R. J. Am. Ceram. Soc. 1959, 42 (11), 563.
doi: 10.1111/j.1151-2916.1959.tb13574.x
21 Tong J. ; Eyring L. J. Alloys Compd. 1995, 225 (1-2), 139.
doi: 10.1016/0925-8388(94)07079-2
22 Ubaldini A. ; Carnasciali M. M. J. Alloys Compd. 2008, 454 (1-2), 374.
doi: 10.1016/j.jallcom.2006.12.067
23 Abrashev M. V. ; Todorov N. D. ; Geshev J. J. Appl. Phys. 2014, 116 (10), 103508.
doi: 10.1063/1.4894775
24 Lunsford J. H. ; Yang X. ; Haller K. ; Laane J. ; Mestl G. ; Knozinger H. J. Phys. Chem. 1993, 97 (51), 13810.
doi: 10.1021/j100153a061
25 Boldish S. I. ; White W. B. Spectrochim. Acta 1979, 35 (11), 1235.
doi: 10.1016/0584-8539(79)80204-4
26 Gopinatht C. R. ; Brown I. D. J. Raman Spectrosc. 1982, 12 (3), 278.
doi: 10.1002/jrs.1250120315
27 Turcotte R. P. ; Sawyer J. O. ; Eyring L. J. Inorg. Chem. 1969, 8 (2), 238.
doi: 10.1021/ic50072a012
28 Klingenberg B. ; Vannice M. A. J. Chem. Mater. 1996, 8 (12), 2755.
doi: 10.1021/cm9602555
29 Jiang G. J. ; Zhuang H. R. ; Li W. L. ; Wu F. Y. ; Zhang B. L. Prog. Chem. 1998, 10 (3), 327.
doi: 10.3321/j.issn:1005-281X.1998.03.011
江国健; 庄汉锐; 李文兰; 邬凤英; 张宝林. 化学进展, 1998, 10 (3), 327.
doi: 10.3321/j.issn:1005-281X.1998.03.011
30 Auroux A. ; Gervasini A. J. Phys. Chem. 1990, 94 (16), 6371.
doi: 10.1021/j100379a041
31 Choudhary V. R. ; Uphade B. S. ; Mulla S. A. R. Ind. Eng. Chem. Res. 1997, 36 (9), 3594.
doi: 10.1021/ie960676w
32 Choudhary V. R. ; Mulla S. A. R. ; Uphade B. S. Fuel 1999, 78 (4), 427.
doi: 10.1016/S0016-2361(98)00168-9
33 Yamazoe N. ; Teraoka Y. ; Seiyama T. Chem. Lett. 1981, 10 (12), 1767.
doi: 10.1246/cl.1981.1767
34 Kung, H. H. Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier: Amsterdam, 1989; pp 112-113.
35 Ding W. ; Chen Y. ; Fu X. Catal. Lett. 1994, 23 (1), 69.
doi: 10.1007/BF00812132
36 You R. ; Zhang Y. ; Liu D. ; Meng M. ; Zheng L. ; Zhang J. ; Hu T. J. Phys. Chem. C 2014, 118 (44), 25403.
doi: 10.1021/jp505601x
37 Huang S. J. ; Walters A. B. ; Vannice M. A. J. Catal. 2000, 192 (1), 29.
doi: 10.1006/jcat.2000.2846
38 Jiang X. Y. ; Zhou R. X. ; Pan P. ; Zhu B. ; Yuan X. X. ; Zheng X. M. Appl. Catal. A: Gen. 1997, 150 (1), 131.
doi: 10.1016/S0926-860X(96)00293-1
[1] 张英杰,朱子翼,董鹏,邱振平,梁慧新,李雪. LiFePO4电化学反应机理、制备及改性研究新进展[J]. 物理化学学报, 2017, 33(6): 1085-1107.
[2] 张雪,韩洋,柴双志,胡南滔,杨志,耿会娟,魏浩. Cu2ZnSn(S,Se)4薄膜太阳电池研究进展[J]. 物理化学学报, 2016, 32(6): 1330-1346.
[3] 张洁, 张江浩, 张长斌, 贺泓. 不同晶相结构二氧化锰催化完全氧化乙醇[J]. 物理化学学报, 2015, 31(2): 353-359.
[4] 邓陶丽, 闫世润, 胡建国. GdAlO3:Er3+,Yb3+荧光粉的制备与上转换发光性能[J]. 物理化学学报, 2014, 30(4): 773-780.
[5] 胡晓燕, 李春义, 杨朝合. V2O5负载量对V2O5/Al2O3氧化活化正庚烷催化裂解反应的影响[J]. 物理化学学报, 2011, 27(09): 2209-2216.
[6] 叶青, 赵建生, 李冬辉, 赵俊, 程水源, 康天放. SnO2负载Au和M-Au(M=Pt, Pd)催化剂及其低温催化氧化CO性能[J]. 物理化学学报, 2011, 27(01): 169-176.
[7] 李雷, 詹瑛瑛, 陈崇启, 佘育生, 林性贻, 郑起. 不同方法制备的CeO2载体对CuO/CeO2催化剂水煤气变换活性和稳定性的影响[J]. 物理化学学报, 2009, 25(07): 1397-1404.
[8] 邓正华;李仁贵;王璐;邓佳闽;高建东;马志刚;杜鸿昌;索继栓. 锂离子电池隔膜的研究进展[J]. 物理化学学报, 2007, 23(Supp): 90-93.
[9] 胡义华;林家勇;武华;陈仁;王小涓;杨世和. 复合物Mg+-S2(CH3)2的光诱导反应[J]. 物理化学学报, 2006, 22(06): 744-746.
[10] 王海水;王一兵;席时权. 电荷转移配合物薄膜制备方法和结构表征的研究进展[J]. 物理化学学报, 2004, 20(10): 1281-1286.
[11] 孟祥举;肖丰收. 温和条件下新型铜基磷酸盐在氧化反应中的高催化活性[J]. 物理化学学报, 2004, 20(08S): 939-945.
[12] 刘钰, 杨向光, 刘玉敏, 吴越. La2CuO4的制备及其对催化消除NO活性的影响[J]. 物理化学学报, 1999, 15(06): 506-511.
[13] 李静,汪景春,窦伯生,吴越. Cu-Co合成醇催化剂制备方法的研究[J]. 物理化学学报, 1997, 13(03): 278-282.
[14] 李绪渊,张自萍,马建泰,朱宗祯,孟益民. 钙钛矿型La1+X/2Sr1-x/2Co1-xCuxO3催化CO氧化活性与表征[J]. 物理化学学报, 1996, 12(06): 502-507.
[15] 王必勋,伏义路,方书农. Cu-ZSM-5分子筛上[Cu-O-Cu]2+物种的原位红外光谱研究[J]. 物理化学学报, 1995, 11(11): 974-978.