Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2058-2063    DOI: 10.3866/PKU.WHXB201705101
论文     
密胺苯二醛多孔聚合物/聚二甲基硅氧烷混合基质膜的制备及气体分离性能
王亚丹,肖强*(),钟依均,朱伟东
Preparation and Gas Separation Properties of Melamine-Phthalaldehyde Porous Polymer/Polydimethylsiloxane Mixed Matrix Membrane
Ya-Dan WANG,Qiang XIAO*(),Yi-Jun ZHONG,Wei-Dong ZHU
 全文: PDF(1504 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

以溶液复合成膜法制备了密胺苯二醛多孔聚合物(MA)/聚二甲基硅氧烷(PDMS)混合基质膜,利用扫描电镜(SEM)表征了混合基质膜的形貌。考察了不同MA用量下MA/PDMS混合基质膜的气体分离性能,结果表明,MA的加入可以在提高PDMS膜渗透系数的同时提高CO2气体分离选择性;随着混合基质膜中MA含量的增加,混合基质膜的渗透系数均明显提高,气体分离选择性则先增大后减小。双组分混合气体分离测试结果表明,MA/PDMS(1.2%(w,质量分数))混合基质膜对CO2/N2和CO2/CH4的分离选择性分别是19.2和6.0,CO2的渗透系数达到8100 Barrer,均高于纯PDMS膜。MA/PDMS(1.2%(w))混合基质膜对CO2/N2混合气的分离性能突破了Robeson上限。

关键词: 多孔聚合物聚二甲基硅氧烷混合基质膜气体分离    
Abstract:

Melamine phthalaldehyde porous polymer (MA)/polydimethylsiloxane (PDMS) mixed matrix membranes (MMMs) were prepared using the solution casting method. The morphology of the membranes was examined using a scanning electron microscope (SEM). The gas separation performance of the prepared MA/PDMS MMMs with different MA contents was investigated. The results indicate that the incorporation of MA could improve the permeability/selectivity combinations of the PDMS membrane. On increasing the MA content, the permeability of the membranes increased, whereas, the separation selectivity increased at first and then decreased. The binary gas permeation test results showed that separation selectivities of 19.2 and 6.0 for CO2/N2 and CO2/CH4, respectively, were achieved on the MA/PDMS (1.2% (w, mass fraction)) membrane. Additionally, the CO2 permeability reached up to 8100 Barrer, much higher than that of the pure PDMS membrane. The MA/PDMS (1.2% (w)) MMM surpasses the Roberson upper bound for CO2/N2 separation.

Key words: Porous polymer    PDMS    Mixed matrix membrane    Gas separation
收稿日期: 2017-04-05 出版日期: 2017-05-10
中图分类号:  O643  
基金资助: 国家自然科学基金(21471131);国家自然科学基金(21303166)
通讯作者: 肖强     E-mail: xiaoq@zjnu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王亚丹
肖强
钟依均
朱伟东

引用本文:

王亚丹,肖强,钟依均,朱伟东. 密胺苯二醛多孔聚合物/聚二甲基硅氧烷混合基质膜的制备及气体分离性能[J]. 物理化学学报, 2017, 33(10): 2058-2063, 10.3866/PKU.WHXB201705101

Ya-Dan WANG,Qiang XIAO,Yi-Jun ZHONG,Wei-Dong ZHU. Preparation and Gas Separation Properties of Melamine-Phthalaldehyde Porous Polymer/Polydimethylsiloxane Mixed Matrix Membrane. Acta Phys. -Chim. Sin., 2017, 33(10): 2058-2063, 10.3866/PKU.WHXB201705101.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705101        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2058

图1  MA的结构式
图2  77 K,MA的N2吸脱附等温线及DFT孔径分布
图3  MA的SEM、TEM图和MA在正庚烷中的分散液照片
图4  MA/PDMS混合基质膜表面SEM图和膜照片(插图)
图5  MA/PDMS混合基质膜截面SEM图
Membrane PCO2/Barrer PN2/Barrer αCO2/N2 PCH4/Barrer αCO2/CH4
Pure PDMS 3496 ± 160 321 ± 13 10.9 ± 0.6 1030 ± 45 3.4 ± 0.3
0.4% MA/PDMS 4458 ± 204 340 ± 16 13.1 ± 0.6 1110 ± 50 4.0 ± 0.3
1.2% MA/PDMS 5512 ± 235 343 ± 22 16.1 ± 0.7 1251 ± 60 4.4 ± 0.3
2.0% MA/PDMS 5909 ± 270 592 ± 35 10.0 ± 0.5 2180 ± 115 2.7 ± 0.2
表1  MA/PDMS混合基质膜的单组份气体渗透系数及理想选择性(293 K)
图6  不同含量的MA/PDMS混合基质膜上双组分气体分离性能(T = 293 K, △p = 3×105 Pa)
图7  MA/PDMS混合基质膜上CO2/N2 (a)和CO2/CH4 (b)分离与Robeson上限的比较
1 Dong G. ; Li H. ; Chen V. J. Mater. Chem. A 2013, 1, 4610.
doi: 10.1039/c3ta00927k
2 Rangnekar N. ; Mittal N. ; Elyassi B. ; Caro J. ; Tsapatsis M. Chem. Soc. Rev. 2015, 44, 7128.
doi: 10.1039/c5cs00292c
3 Gascon J. ; Kapteijn F. ; Zornoza B. ; Sebastian V. ; Casado C. ; Coronas J. Chem. Mater. 2012, 43, 2829.
doi: 10.1002/chin.201240225
4 Ramaiah K. P. ; Satyasri D. ; Sridhar S. ; Krishnaiah A. J. Hazard. Mater. 2013, 261, 362.
doi: 10.1016/j.jhazmat.2013.07.048
5 Barankova E. ; Pradeep N. ; Peinemann K. V. Chem. Commun. 2013, 49, 9419.
doi: 10.1039/c3cc45196h
6 Gong J. H. ; Wang C. H. ; Bian Z. J. ; Yang L. ; Hu J. ; Liu H. L. Acta Phys. -Chim. Sin. 2015, 31, 1963.
doi: 10.3866/PKU.WHXB201508282
龚金华; 王臣辉; 卞子君; 阳立; 胡军; 刘洪来. 物理化学学报, 2015, 31, 1963.
doi: 10.3866/PKU.WHXB201508282
7 Ai M. ; Shishatskiy S. ; Wind J. ; Zhang X. ; Nottbohm C. T. ; Mellech N. ; Winter A. ; Vieker H. ; Qiu J. ; Dietz K. J. Adv. Mater. 2014, 26, 3421.
doi: 10.1002/adma.201470142
8 Weng T. H. ; Tseng H. H. ; Wey M. Y. Int. J. Hydrogen Energy 2009, 34, 8707.
doi: 10.1016/j.ijhydene.2009.08.027
9 Ahmad A. L. ; Jawad Z. A. ; Low S. C. ; Zein S. H. S. J. Membr. Sci. 2014, 451, 55.
doi: 10.1016/j.memsci.2013.09.043
10 Bae T. H. ; Long J. R. Energy Environ. Sci. 2013, 6, 3565.
doi: 10.1039/C3EE42394H
11 Rangnekar N. ; Shete M. ; Agrawal K. V. ; Topuz B. ; Kumar P. ; Guo Q. ; Ismail I. ; Alyoubi A. ; Basahel S. ; Narasimharao K. ; W.Macosko C. ; Mkhoyan K. ; Al-Thabaiti S. ; Stottrup B. ; Tsapatsis M. Angew. Chem. Int. Ed. 2015, 54, 6571.
doi: 10.1002/ange.201411791
12 Dawson R. ; Adams D. J. ; Cooper A. I. Chem. Sci. 2011, 2, 1173.
doi: 10.1039/C1SC00100K
13 Ben T. ; Pei C. ; Zhang D. ; Xu J. ; Deng F. ; Jing X. ; Qiu S. Energy Environ. Sci. 2011, 4, 3991.
doi: 10.1039/c1ee01222c
14 Ben T. ; Ren H. ; Ma S. ; Cao D. ; Lan J. ; Jing X. ; Wang W. ; Xu J. ; Deng F. ; Simmons J. M. ; Qiu S. ; Zhu G. Angew. Chem. Int. Ed. 2009, 48, 9457.
doi: 10.1002/anie.200904637
15 Schwab M. G. ; Fassbender B. ; Spiess H. W. ; Thomas A. ; Feng X. ; Müllen K. J. Am. Chem. Soc. 2009, 131, 7216.
doi: 10.1021/ja902116f
16 Schwab M. G. ; Crespy D. ; Feng X. ; Landfester K. ; Muellen K. Macromol. Rapid Commun. 2011, 32, 1798.
doi: 10.1002/marc.201100511
17 Hu J. X. ; Shang H. ; Wang J. G. ; Luo L. ; Xiao Q. ; Zhong Y. J. ; Zhu W. D. Ind. Eng. Chem. Res. 2014, 53, 11828.
doi: 10.1021/ie501736t
18 Gao X. ; Zou X. ; Ma H. ; Meng S. ; Zhu G. Adv. Mater. 2014, 26, 3644.
doi: 10.1002/adma.201400020
19 Hussain M. ; K?nig A. Chem. Eng. Technol. 2012, 35, 561.
doi: 10.1002/ceat.201100419
20 Hu J. X. ; Zhang J. ; Zou J. F. ; Xiao Q. ; Zhong Y. J. ; Zhu W. D. Acta Phys. -Chim. Sin. 2014, 30, 1169.
doi: 10.3866/PKU.WHXB201404223
胡敬秀; 张静; 邹建锋; 肖强; 钟依均; 朱伟东. 物理化学学报, 2014, 30, 1169.
doi: 10.3866/PKU.WHXB201404223
21 Choi J. ; Tsapatsis M. J. Am. Chem. Soc. 2010, 132, 448.
doi: 10.1021/ja908864g
22 Guo X. ; Huang H. ; Ban Y. ; Yang Q. ; Xiao Y. ; Li Y. ; Yang W. ; Zhong C. J. Membr. Sci. 2015, 478, 130.
doi: 10.1016/j.memsci.2015.01.007
23 Ha H. ; Park J. ; Ando S. ; Kim C. B. ; Nagai K. ; Freeman B. D. ; Ellison C. J. J. Membr. Sci. 2016, 518, 131.
doi: 10.1016/j.memsci.2016.06.028
24 Koolivand H. ; Sharifa A. ; Chehrazi E. ; Kashani M. R. ; Paran S. M.R. Polymer Sci. Series A 2016, 58, 801.
doi: 10.1134/s0965545x16050084
25 Robeson L. M. J. Membr. Sci. 2008, 320, 390.
doi: 10.1016/j.memsci.2008.04.030
[1] 厉晓蕾,陶硕,李科达,王亚松,王苹,田志坚. 低共熔溶剂中原位合成ZIF-8膜及其气体分离性能[J]. 物理化学学报, 2016, 32(6): 1495-1500.
[2] 龚金华,王臣辉,卞子君,阳立,胡军,刘洪来. 多孔材料表面修饰聚酰亚胺非对称混合基质膜对CO2/N2和CO2/CH4的气体分离[J]. 物理化学学报, 2015, 31(10): 1963-1970.
[3] 胡立梅, 蔺存国, 王利, 苑世领. 溶菌酶蛋白在聚合物防污膜表面的吸附[J]. 物理化学学报, 2014, 30(11): 2149-2156.
[4] 汤儆, 庞文辉, 任禾, 陈巧兰, 宋子旺, 林建航. 微接触印刷技术在ITO基底上快速转移Au纳米粒子图案[J]. 物理化学学报, 2013, 29(03): 612-618.
[5] 李慧琴, 金承钰, 范文春, 梁齐. PCL-b-PDMS-b-PCL复合环氧树脂的表面结构[J]. 物理化学学报, 2009, 25(06): 1070-1074.
[6] 曹志坚;张俊松;徐娟;陆天虹;李邨;黄晓华. 铽-聚二甲基硅氧烷配合物的荧光特性[J]. 物理化学学报, 2006, 22(03): 369-372.
[7] 彭静;朱轶才;翟茂林;乔金梁;魏根拴. OH对聚二甲基硅氧烷乳液辐射效应的影响[J]. 物理化学学报, 2005, 21(08): 873-877.