Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2099-2105    DOI: 10.3866/PKU.WHXB201705115
论文     
醋酸铅作为铅源合成CH3NH3PbBr3-xClx纳米晶体颗粒
王亚楠1,2,马品1,2,彭路梅1,张迪1,2,方艳艳1,周晓文1,林原1,2,*()
1 中国科学院化学研究所,光化学重点实验室,北京分子科学国家实验室,中国科学院分子科学科教融合卓越中心,北京100190
2 中国科学院大学,北京100049
Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate
Ya-Nan WANG1,2,Pin MA1,2,Lu-Mei PENG1,Di ZHANG1,2,Yan-Yan FANG1,Xiao-Wen ZHOU1,Yuan LIN1,2,*()
1 Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(1558 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

采用醋酸铅作为铅源,成功制备出CH3NH3PbBr3-xClx (MA = CH3NH3,0 ≤ x ≤ 3)发光纳米晶体颗粒。醋酸铅比卤化物铅盐,尤其是氯化铅,能更好地溶解在N'N-二甲基甲酰胺(DMF)溶剂中,解决了卤化物盐溶解度低的问题。在MAPbBr3-xClx中,不同比例的Br/Cl可以产生不同的光谱性质,荧光光谱(PL)可以从399 nm调控到527 nm。所有荧光光谱的半峰宽(FWHM)在20 nm左右,说明色谱比较纯。制备的MAPbBr3-xClx纳米晶体颗粒尺寸分布在~(11 ± 3)nm,可以很好地分散在甲苯中。其中,MAPbBr3纳米晶体颗粒的荧光量子产率(PLQY)高达73%,其平均荧光寿命为97.4 ns。

关键词: 钙钛矿CH3NH3PbBr3-xClx纳米晶体醋酸铅    
Abstract:

Lead acetate, which is highly soluble in dimethylformamide, was used to synthesize mixed halide perovskite CH3NH3PbBr3-xClx (MA = CH3NH3, 0 ≤ x ≤ 3) nanocrystals (NCs). This method provides an approach to address the low solubility of lead halides, especially lead chloride. Different Br/Cl ratios in MAPbBr3-xClx lead to various optical properties. The photoluminescence emission peak can be tuned from 399 to 527 nm. Their full-widths at half-maxima (FWHM) are about 20 nm. MAPbBr3-xClx NCs have an average diameter of ~(11 ± 3) nm and have uniform dispersion in toluene. The MAPbBr3 NCs have a long average recombination lifetime (τave = 97.4 ns) and a photoluminescence quantum yield (PLQY) of up to 73%.

Key words: Perovskite    CH3NH3PbBr3-xClx    Nanocrystal    Lead acetate
收稿日期: 2017-04-03 出版日期: 2017-05-11
中图分类号:  O646  
基金资助: 国家自然科学基金(51303186);国家自然科学基金(51673204);国家重点研发计划材料基因工程关键技术与支撑平台(2016YFB0700600)
通讯作者: 林原     E-mail: linyuan@iccas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王亚楠
马品
彭路梅
张迪
方艳艳
周晓文
林原

引用本文:

王亚楠,马品,彭路梅,张迪,方艳艳,周晓文,林原. 醋酸铅作为铅源合成CH3NH3PbBr3-xClx纳米晶体颗粒[J]. 物理化学学报, 2017, 33(10): 2099-2105, 10.3866/PKU.WHXB201705115

Ya-Nan WANG,Pin MA,Lu-Mei PENG,Di ZHANG,Yan-Yan FANG,Xiao-Wen ZHOU,Yuan LIN. Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate. Acta Phys. -Chim. Sin., 2017, 33(10): 2099-2105, 10.3866/PKU.WHXB201705115.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705115        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2099

Fig 1  (a) Schematic of MAPbBr3 NCs formation process by the reprecipitation technique. (b) Photographs taken under UV irradiation at indicated volume period with the precursor dropped into the toluene.
Fig 2  (a) Transmission electron micrograph of colloidal MAPbBr3 NCs, inset shows photograph of the NCs dispersion in toluene under ambient light. (b) Size distribution histogram of MAPbBr3 NCs. (c) X-ray diffraction patterns of MAPbBr3 NCs. (d?f) XPS spectra corresponding to Pb 4f (d), Br 3d (e), and N 1s (f) of MAPbBr3 NCs.
Fig 3  (a) PL and UV-Vis spectra of green MAPbBr3 NCs, insets show photographs of a toluene dispersion of MAPbBr3 NCs under white light and UV-light. (b) PL decay (black circle) and fitting curves (red line) for excitation at 365 nm and emission at 527 nm of MAPbBr3 NCs, the inset table is the fitting result. color online.
Fig 4  (a) PL spectra of MAPbBr3 NCs with the increase of temperature. (b) PL spectra of MAPbBr3 NCs with the decrease of temperature. (c) Temperature-dependent PL intensity of MAPbBr3 NCs. color online.
Fig 5  (a) Photographs of MAPbBr3-xClx NCs under 365 nm UV-lamp. (b) X-ray diffraction patterns of MAPbBr3-x NCs. Inset: PL emission spectra of MAPbBrxI3-x. (c) PL decay curves of MAPbBr3-x NCs for excitation at 365 nm.
MAPbBr3?xClxPL peak/nmFWHM/nmτave/nsPLQY/%
x = 0.65052264.6965
x = 1.24702232.2035
x = 1.84362021.9424
x = 2.44162021.3912
x = 3.03991714.548
Table 1  Detailed information of halide substituted samples
1 Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r
2 Ke W. ; Fang G. ; Liu Q. ; Xiong L. ; Qin P. ; Tao H. ; Wang J. ; Lei H. ; Li B. ; Wan J. ; Yang G. ; Yan Y. J. Am. Chem. Soc. 2015, 137, 6730.
doi: 10.1021/jacs.5b01994
3 Bi D. ; Tress W. ; Dar M. I. ; Gao P. ; Luo J. ; Renevier C. ; Schenk K. ; Abate A. ; Giordano F. ; Correa Baena J. P. ; Decoppet J. D. ; Zakeeruddin S. M. ; Nazeeruddin M. K. ; Gr?tzel M. ; Hagfeldt A. Sci. Adv. 2016, 2, 1.
doi: 10.1126/sciadv.1501170
4 Wang Y. Q. ; Li L. ; Nie L. H. ; Li N. N. ; Shi C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724.
doi: 10.3866/pku.whxb201607272
王艳青; 李龙; 聂林辉; 李楠楠; 史成武. 物理化学学报, 2016, 32 (11), 2724.
doi: 10.3866/pku.whxb201607272
5 Mejía Escobar M. A. ; Pathak S. ; Liu J. ; Snaith H. J. ; Jaramillo F. ACS App. Mater. Inter. 2017, 9
doi: 10.1021/acsami.6b12509
6 Zhou L. ; Zhu J. ; Xu Y. F. ; Shao Z. P. ; Zhang X. H. ; Ye J. J. ; Huang Y. ; Zhang C. N. ; Dai S. Y. Acta Phys.-Chim. Sin. 2016, 32
doi: 10.3866/pku.whxb201602241
周立; 朱俊; 徐亚峰; 邵志鹏; 张旭辉; 叶加久; 黄阳; 张昌能; 戴松元. 物理化学学报, 2016, 32 (5), 1207.
doi: 10.3866/pku.whxb201602241
7 NREL, B. R. C. E. http://www.nrel.gov, accessed: November 2016.
8 Yin X. ; Xu Z. ; Guo Y. ; Xu P. ; He M. ACS Appl. Mater. Inter. 2016, 8, 29580.
doi: 10.1021/acsami.6b09326
9 Yin X. ; Guo Y. ; Xue Z. ; Xu P. ; He M. ; Liu B. Nano Res. 2015, 8, 1997.
doi: 10.1007/s12274-015-0711-4
10 Tan Z. K. ; Moghaddam R. S. ; Lai M. L. ; Docampo P. ; Higler R. ; Deschler F. ; Price M. ; Sadhanala A. ; Pazos L.M. ; Credgington D. ; Hanusch F. ; Bein T. ; Snaith H. J. ; Friend R. H. Nat. Nanotech. 2014, 9, 687.
doi: 10.1038/nnano.2014.149
11 Zhang X. ; Liu H. ; Wang W. ; Zhang J. ; Xu B. ; Karen K. L. ; Zheng Y. ; Liu S. ; Chen S. ; Wang K. ; Sun X. W. Adv. Mater. 2017, 1606405- 1/7.
doi: 10.1002/adma.201606405
12 Yao Q. ; Fang H. ; Deng K. ; Kan E. ; Jena P Nanoscale 2016, 8, 17836.
doi: 10.1039/c6nr05573g
13 Cho H. ; Jeong S. H. ; Park M. H. ; Kim Y. H. ; Wolf C. ; Lee C. L. ; Heo J. H. ; Sadhanala A. ; Myoung N. ; Yoo S. Science 2015, 350, 1222.
doi: 10.1126/science.aad1818
14 Ling Z. ; Yuan Z. ; Tian. Y. ; Wang X. ; Wang J. C. ; Xin Y. ; Hanson K. ; Ma B. ; Gao H Adv. Mater. 2015, 17, 1.
doi: 10.1002/adma.201503954
15 Sichert J. A. ; Tong Y. ; Mutz N. ; Vollmer M. ; Fischer S. ; Milowska K. Z. ; García Cortadella R. ; Nickel B. ; Cardenas-Daw C. ; Stolarczyk J. K. ; Urban A. S. ; Feldmann J. Nano Lett. 2015, 15, 6521.
doi: 10.1021/acs.nanolett.5b02985
16 Tyagi P. ; Arveson S. M. ; Tisdale W. A. J. Phys. Chem. Lett. 2015, 6, 1911.
doi: 10.1021/acs.jpclett.5b00664
17 Tong Y. ; Ehrat F. ; Vanderlinden W. ; Cardenas-Daw C. ; Stolarczyk J. K. ; Polavarapu L. ; Urban A. S. ACS Nano 2016, 10, 10936.
doi: 10.1021/acsnano.6b05649
18 Hassan Y. ; Song Y. ; Pensack R. D. ; Abdelrahman A. I. ; Kobayashi Y. ; Winnik M. A. ; Scholes G. D. Adv. Mater. 2016, 28, 566.
doi: 10.1002/adma.201503461
19 Di D. ; Musselman K. P. ; Li G. ; Sadhanala A. ; Ievskaya Y. ; Song Q. ; Tan Z. K. ; Lai M. L. ; MacManus-Driscoll J. L. ; Greenham N. C. J. Phys. Chem. Lett. 2015, 6 (3), 446.
doi: 10.1021/jz502615e
20 Huang H. ; Susha A. S. ; Kershaw S. V. ; Hung T. F. ; Rogach A. L. Adv. Sci. 2015, 2 (9), 1500194- 1.
doi: 10.1002/advs.201500194
21 Bhaumik S. ; Veldhuis S. A. ; Ng Y. F. ; Li M. ; Muduli S. K. ; Sum T. C. ; Damodaran B. ; Mhaisalkar S. ; Mathews N. Chem. Commun. 2016, 52, 7118.
doi: 10.1039/C6CC01056C
22 Gonzalez-Carrero S. ; Galian R. E. ; Pérez-Prieto J. J. Mater. Chem. A 2015, 3, 9187.
doi: 10.1039/c4ta05878j
23 Schmidt L. C. ; Pertegás A. ; González-Carrero S. ; Malinkiewicz O. ; Agouram S. ; Mínguez Espallargas G. ; Bolink H. J. ; Galian R. E. ; Pérez-Prieto J. J. Am. Chem. Soc. 2014, 136, 850.
doi: 10.1021/ja4109209
24 Zhang F. ; Zhong H. ; Chen C. ; Wu X. G. ; Hu X. ; Huang H. ; Han J. ; Zou B. ; Dong Y. ACS Nano 2015, 9 (4), 4533.
doi: 10.1021/acsnano.5b01154
25 Naphade R. ; Nagane S. ; Shanker G. S. ; Fernandes R. ; Kothari D. ; Zhou Y. ; Padture N. P. ; Ogale S. ACS Appl. Mater. Inter. 2016, 8, 854.
doi: 10.1021/acsami.5b10208
26 Sadhanala A. ; Ahmad S. ; Zhao B. ; Giesbrecht N. ; Pearce P.M. ; Deschler F. ; Hoye R. L. Z. ; G?del K. C. ; Bein T. ; Docampo P. ; Dutton S. E. ; De Volder M. F. L. ; Friend R. H. Nano Lett. 2015, 15, 6095.
doi: 10.1021/acs.nanolett.5b02369
27 Pathak S. ; Sakai N. ; Wisnivesky Rocca Rivarola F. ; Stranks S. D. ; Liu J. W. ; Eperon G. E. ; Ducati C. ; Wojciechowski K. ; Griffiths J. T. ; Haghighirad A. A. ; Pellaroque A. ; Friend R. H. ; Snaith H. J. Chem. Mater. 2015, 27, 8066.
doi: 10.1021/acs.chemmater.5b03769
28 Zhang W. ; Saliba M. ; Moore D. T. ; Pathak S. K. ; H?rantner M. T. ; Stergiopoulos T. ; Stranks S. D. ; Eperon G. E. ; Alexander-Webber J. A. ; Abate A. ; Sadhanala A. ; Yao S. ; Chen Y. ; Friend R. H. ; Estroff L. A. ; Wiesner U. ; Snaith H. J. Nat. Commun. 2015, 6, 6142.
doi: 10.1038/ncomms7142
29 Zhuo S. ; Zhang J. ; Shi Y. ; Huang Y. ; Zhang B. Angew Chem. Inter. Edit. 2015, 54, 5693.
doi: 10.1002/anie.201411956
30 Comin R. ; Walters G. ; Thibau E. S. ; Voznyy O. ; Lu Z. H. ; Sargent E. H. J. Mater. Chem. C 2015, 3, 8839.
doi: 10.1039/C5TC01718A
31 Zhao Y. ; Riemersma C. ; Pietra F. ; Koole R. ; de MelloDonegá C. ; Meijerink A. ACS Nano 2012, 6, 9058.
doi: 10.1126/science.1243167
[1] 刘志明, 刘国亮, 洪昕林. 表面缺陷与钯的沉积对硫化镉纳米晶粒的光催化制氢性能的影响[J]. 物理化学学报, 2019, 35(2): 215-222.
[2] 毕富珍,郑晓,任志勇. 甲胺基-甲脒基混合钙钛矿的第一性原理研究[J]. 物理化学学报, 2019, 35(1): 69-75.
[3] 张婧,何有军,闵杰. 钙钛矿太阳能电池中小分子空穴传输材料的研究进展[J]. 物理化学学报, 2018, 34(11): 1221-1238.
[4] 杨春和,唐爱伟,滕枫,蒋克健. 钙钛矿CH3NH3PbI3晶体的电化学[J]. 物理化学学报, 2018, 34(11): 1197-1201.
[5] 黄鹏,元利刚,李耀文,周祎,宋波. 左旋多巴和N, N-二甲基亚砜共掺杂PEDOT:PSS作为空穴传输层的高性能p-i-n型钙钛矿太阳能电池[J]. 物理化学学报, 2018, 34(11): 1264-1271.
[6] 许利刚,邱伟,陈润锋,张宏梅,黄维. ZnO电极修饰层在钙钛矿太阳能电池中的应用[J]. 物理化学学报, 2018, 34(1): 36-48.
[7] 黄杨,孙庆德,徐文,何垚,尹万健. 卤化钙钛矿太阳能电池材料理论研究进展[J]. 物理化学学报, 2017, 33(9): 1730-1751.
[8] 顾津宇,齐朋伟,彭扬. 无机非铅钙钛矿太阳能电池研究进展[J]. 物理化学学报, 2017, 33(7): 1379-1389.
[9] 刘继翀,唐峰,叶枫叶,陈琪,陈立桅. 利用扫描开尔文探针显微镜观察薄膜光电器件能级排布[J]. 物理化学学报, 2017, 33(10): 1934-1943.
[10] 吕乾睿,李晶,廉志鹏,赵昊岩,董桂芳,李强,王立铎,严清峰. 基于CH3NH3PbI3单晶的Ta2O5顶栅双极性场效应晶体管[J]. 物理化学学报, 2017, 33(1): 249-254.
[11] 晒旭霞,李丹,刘双双,李浩,王鸣魁. 钙钛矿太阳电池吸光层材料研究进展[J]. 物理化学学报, 2016, 32(9): 2159-2170.
[12] 许瀚,童叶翔,李高仁. Pd纳米晶的调控合成及其在燃料电池中的应用[J]. 物理化学学报, 2016, 32(9): 2171-2184.
[13] 肖娟,张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展[J]. 物理化学学报, 2016, 32(8): 1894-1912.
[14] 刘雪朋,孔凡太,陈汪超,于婷,郭福领,陈健,戴松元. 有机空穴传输材料在钙钛矿太阳电池中的应用[J]. 物理化学学报, 2016, 32(6): 1347-1370.
[15] 鲁效庆,赵兹罡,李可,魏淑贤,瞿媛媛,牛永强,刘学锋. 第一性原理研究混合钙钛矿CH3NH3PbxSn1-xI3结构及光电特性[J]. 物理化学学报, 2016, 32(6): 1439-1445.