Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2013-2021    DOI: 10.3866/PKU.WHXB201705113
研究论文     
分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为
张陶娜1, 徐雪雯1, 董亮2, 谭昭怡2, 刘春立1
1. 北京分子科学国家实验室, 放射化学与辐射化学重点学科实验室, 北京大学化学与分子工程学院, 北京 100871;
2. 中国工程物理研究院核物理与化学研究所, 四川 绵阳 621900
Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures
ZHANG Tao-Na1, XU Xue-Wen1, DONG Liang2, TAN Zhao-Yi2, LIU Chun-Li1
1. Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China;
2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China
 全文: PDF(1675 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

采用分子动力学方法研究了铀酰在叶腊石表面的吸附和扩散。在碳酸根离子存在的情况下,探究了温度对铀酰吸附和扩散的影响。碳酸根离子与铀酰存在较强的作用力,不同数目的碳酸根离子与铀酰结合会形成多种铀酰种态。在不同温度的模拟中,得到了UO22+、UO2CO3、UO2(CO322-、UO2(CO334-四种铀酰种态和铀酰聚合物。通过原子密度图,观察了粒子在溶液中的分布情况。发现UO22+和UO2CO3容易吸附在叶腊石上,而UO2(CO322-和UO2(CO3 34-主要存在于扩散层中。随着时间的推移,越来越多的碳酸根离子与铀酰配位,使得铀酰在叶腊石上的吸附逐渐减少。本文计算了不同温度下,各铀酰种态的扩散系数。在扩散层中,各种态的扩散系数随温度的变化较为一致,而在吸附层中,UO22+和UO2CO3的扩散速率随温度的变化较UO2(CO322-和UO2(CO3 34-慢。但是在同一温度下,同一个吸附层或扩散层中,铀酰种态的扩散系数大小顺序始终保持不变:UO22+ >UO2CO3 >UO2(CO322- >UO2(CO3 34-。说明在碳酸根存在的情况下,UO22+可能是主要的扩散形式。

关键词: 叶腊石铀酰分子动力学模拟温度吸附扩散    
Abstract:

In this study, molecular dynamics simulations were performed to gain insight into the adsorption and diffusion behavior of uranyl carbonate species on pyrophyllite basal surface at various temperatures (298.15, 313.15, and 333.15 K). At these temperatures, four kinds of uranium species, i.e. UO22+, UO2CO3, UO2(CO3) 22-, UO2(CO3) 34-, and uranyl oligomers were obtained. According to the atomic density profile of each uranyl species, only UO22+ and UO2CO3 were adsorbed on the pyrophyllite surface. Therefore, due to the strong coordination interaction between carbonate ion and uranyl, the pyrophyllite surface exhibited weak adsorption capacity for uranium after prolonged simulations. Self-diffusion coefficients of water molecules and uranyl species in both the adsorbed layer and the diffuse layer were calculated. With increasing temperature, the diffusion coefficients for all species increased; however, in the adsorbed layer, the diffusion coefficients for UO2(CO3) 22- and UO2(CO3) 34- increased faster than those for UO22+ and UO2CO3. Nonetheless, the diffuse order remained unchanged in both the layers: UO22+ > UO2CO3 > UO2(CO3) 22- > UO2(CO3) 34-. This indicates that UO22+ is the main diffusing species.

Key words: Pyrophyllite    Uranyl    Molecular dynamic simulation    Temperature    Adsorption    Diffusion
收稿日期: 2017-04-11 出版日期: 2017-05-11
中图分类号:  O643  
基金资助:

高放废物地质处置专项资金(2007-840,2012-851)和国家自然科学基金(U1530112,11475008,11075006,91026010)资助项目

通讯作者: 刘春立     E-mail: liucl@pku.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张陶娜
徐雪雯
董亮
谭昭怡
刘春立

引用本文:

张陶娜, 徐雪雯, 董亮, 谭昭怡, 刘春立. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017, 33(10): 2013-2021.

ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705113        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2013

(1) Huang, J. W.; Blaylock, M. J.; Kapulnik, Y.; Ensley, B. D. Environ. Sci. Technol. 1998, 32, 2004. doi: 10.1021/es971027u
(2) Gregory, K. B.; Lovley, D. R. Environ. Sci. Technol. 2005, 39, 8943. doi: 10.1021/es050457e
(3) McKinley, J. P.; Zachara, J. M.; Liu, C.; Heald, S. C.; Prenitzer, B.I.; Kempshall, B. W. Geochim. Cosmochim. Acta 2006, 70, 1873. doi: 10.1016/j.gca.2005.10.037
(4) Geckeis, H.; Lützenkirchen, J.; Polly, R.; Rabung, T.; Schmidt, M. Chem. Rev. 2013, 113, 1016. doi: 10.1021/cr300370h
(5) Anirudhan, T.; Bringle, C.; Rijith, S. J. Environ. Radioact. 2010, 101, 267. doi: 10.1016/j.jenvrad.2009.12.001
(6) Campos, B.; Aguilar-Carrillo, J.; Algarra, M.; Gonçalves, M. A.; Rodríguez-Castellón, E.; da Silva, J. C. E.; Bobos, I. Appl. Clay Sci.2013, 85, 53. doi: 10.1016/j.clay.2013.08.046
(7) Dong, W.; Tokunaga, T. K.; Davis, J. A.; Wan, J. Environ. Sci. Technol. 2012, 46, 1565. doi: 10.1021/es2036256
(8) Sachs, S.; Bernhard, G. Chemosphere 2008, 72, 1441. doi: 10.1016/j.chemosphere.2008.05.027
(9) Arai, Y.; Marcus, M. A.; Tamura, N.; Davis, J. A.; Zachara, J. M. Environ. Sci. Technol. 2007, 41, 4633. doi: 10.1021/es062196u
(10) Malin, J. N.; Geiger, M. J. Phys. Chem. A 2010, 114, 1797. doi: 10.1021/jp909504n
(11) Tan, X.; Fang, M.; Wang, X. Molecules 2010, 15, 8431. doi: 10.3390/molecules15118431
(12) Rihs, S.; Gaillard, C.; Reich, T.; Kohler, S. J. Chem. Geol. 2014, 373, 59. doi: 10.1016/j.chemgeo.2014.02.025
(13) Krepelová, A.; Reich, T.; Sachs, S.; Drebert, J.; Bernhard, G. J. Colloid Interface Sci. 2008, 319, 40. doi: 10.1016/j.jcis.2007.11.010
(14) Walter, M.; Arnold, T.; Geipel, G.; Scheinost, A.; Bernhard, G. J. Colloid Interface Sci. 2005, 282, 293. doi: 10.1016/j.jcis.2004.08.133
(15) Fernandes, M. M.; Baeyens, B.; Dähn, R.; Scheinost, A.; Bradbury, M. Geochim. Cosmochim. Acta 2012, 93, 262. doi: 10.1016/j.gca.2012.04.017
(16) Krepelová, A.; Brendler, V.; Sachs, S.; Baumann, N.; Bernhard, G. Environ. Sci. Technol. 2007, 41, 6142. doi: 10.1021/es070419q
(17) Steudtner, R.; Sachs, S.; Schmeide, K.; Brendler, V.; Bernhard, G. Radiochim. Acta 2011, 99, 687. doi: 10.1524/ract.2011.1861
(18) Stejskal, E. O.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288. doi: 10.1063/1.1695690
(19) Northrop, J. H.; Anson, M. L. J. Gen. Physiol. 1929, 12, 543. doi: 10.1085/jgp.12.4.543
(20) Roques, J.; Veilly, E.; Simoni, E. Int. J. Mol. Sci. 2009, 10, 2633. doi: 10.3390/ijms10062633
(21) Perron, H.; Roques, J.; Domain, C.; Drot, R.; Simoni, E.; Catalette, H. Inorg. chem. 2008, 47, 10991. doi: 10.1021/ic801246k
(22) Sebbari, K.; Roques, J.; Simoni, E.; Domain, C.; Perron, H.; Catalette, H. Surf. Sci. 2012, 606, 1135. doi: 10.1016/j.susc.2012.01.023
(23) Polly, R.; Schimmelpfennig, B.; Rabung, T.; Flörsheimer, M.; Klenze, R.; Geckeis, H. Radiochim. Acta 2010, 98, 627. doi: 10.1524/ract.2010.1763
(24) Martorell, B.; Kremleva, A.; Krüger, S.; Rösch, N. J. Phys. Chem. C 2010, 114, 13287. doi: 10.1021/jp101300w
(25) Glezakou, V. A.; deJong, W. A. J. Phys. Chem. A 2011, 115, 1257. doi: 10.1021/jp1092509
(26) Kremleva, A.; Krüger, S.; Rösch, N. Langmuir 2008, 24, 9515. doi: 10.1021/la801278j
(27) Kremleva, A.; Martorell, B.; Krüger, S.; Rösch, N. Phys. Chem. Chem. Phys. 2012, 14, 5815. doi:10.1039/C2CP23886A
(28) Greathouse, J. A.; Cygan, R. T. Environ. Sci. Technol. 2006, 40, 3865. doi: 10.1021/es052522q
(29) Liu, X.; Wang, L.; Zheng, Z.; Kang, M.; Li, C.; Liu, C. J. Hazard. Mater. 2013, 244, 21. doi: 10.1016/j.jhazmat.2012.11.031
(30) Kerisit, S.; Liu, C. Environ. Sci. Technol. 2014, 48, 3899. doi: 10.1021/es405387c
(31) Yang, W.; Zaoui, A. J. Hazard. Mater. 2013, 261, 224. doi: 10.1016/j.jhazmat.2013.07.021
(32) Doudou, S.; Vaughan, D. J.; Livens, F. R.; Burton, N. A. Environ. Sci. Technol. 2012, 46, 7587. doi: 10.1021/es300034k
(33) Kerisit, S.; Liu, C. Geochim. Cosmochim. Acta 2010, 74, 4937. doi: 10.1016/j.gca.2010.06.007
(34) Yang, W.; Zaoui, A. Appl. Clay Sci. 2013, 80, 98. doi: 10.1016/j.clay.2013.04.007
(35) Gruner, J. W. Cryst. Mater. 1934, 88, 412. doi: 10.1524/zkri.1934.88.1.412
(36) Lee, J. H.; Guggenheim, S. Am. Mineral. 1981, 66, 350.
(37) Clark, D. L.; Hobart, D. E.; Neu, M. P. Chem. Rev. 1995, 95, 25. doi: 10.1021/cr00033a002
(38) Cygan, R. T.; Liang, J. J.; Kalinichev, A. G. J. Phys. Chem. B 2004, 108, 1255. doi: 10.1021/jp0363287
(39) Mizan, T. I.; Savage, P. E.; Ziff, R. M. J. Phys. Chem. 1994, 98, 13067. doi: 10.1021/j100100a042
(40) Teleman, O.; Jönsson, B.; Engström, S. Mol. Phys. 1987, 60, 193. doi: 10.1080/00268978700100141
(41) Marry, V.; Dubois, E.; Malikova, N.; Durand-Vidal, S.; Longeville, S.; Breu, J. Environ. Sci. Technol. 2011, 45, 2850. doi: 10.1021/es1031932
(42) Tournassat, C.; Chapron, Y.; Leroy, P.; Bizi, M.; Boulahya, F. J. Colloid Interface Sci. 2009, 339, 533. doi: 10.1016/j.jcis.2009.06.051
(43) Kerisit, S.; Liu, C. Environ. Sci. Technol. 2009, 43, 777. doi: 10.1021/es8016045
(44) Guilbaud, P.; Wipff, G. J. Mol. Struct.: THEOCHEM 1996, 366, 55. doi: 10.1016/0166-1280(96)04496-X
(45) Greathouse, J. A.; O'Brien, R. J.; Bemis, G.; Pabalan, R. T. J. Phys. Chem. B 2002, 106, 1646. doi: 10.1021/jp013250q
(46) Greathouse, J. A.; Cygan, R. T. Phys. Chem. Chem. Phys. 2005, 7, 3580. doi: 10.1039/B509307D
(47) Ören, S.; Çaykara, T.; Kantoglu, Ö.; Güven, O. J. Appl. Polym. Sci. 2000, 78, 2219. doi:10.1002/1097-4628(20001213)78:12<2219::AID-APP200>3.0.CO;2-X
(48) Arai, Y.; McBeath, M.; Bargar, J.; Joye, J.; Davis, J. Geochim. Cosmochim. Acta 2006, 70, 2492. doi: 10.1016/j.gca.2006.02.013
(49) Wang, J.; Peng, R.; Yang, J.; Liu, Y.; Hu, X. Carbohydr. Polym. 2011, 84, 1169. doi: 10.1016/j.carbpol.2011.01.007
(50) Cao, Q.; Huang, F.; Zhuang, Z.; Lin, Z. Nanoscale 2012, 4, 2423. doi: 10.1039/C2NR11993E
(51) Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039
(52) Hoover, W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695
(53) Melchionna, S.; Ciccotti, G.; Lee Holian, B. Mol. Phys. 1993, 78, 533. doi: 10.1080/00268979300100371
(54) Ewald, P. P. Ann. Phys. 1921, 369, 253. doi: 10.1002/andp.19213690304
(55) Liu, P.; Harder, E.; Berne, B. J. Phys. Chem. B 2004, 108, 6595. doi: 10.1021/jp0375057
(56) Allen, P. G.; Bucher, J. J.; Clark, D. L.; Edelstein, N. M.; Ekberg, S. A.; Gohdes, J. W.; Hudson, E. A.; Kaltsoyannis, N.; Lukens, W. W.; Neu, M. P.; Palmer, P. D.; Reich, T.; Shuh, D.K.; Tait, C. D.; Zwick, B. D. Inorg. Chem. 1995, 34, 4797. doi: 10.1021/ic00123a013
(57) Meinrath, G. J. Radioanal. Nucl. Chem. 1996, 211, 349. doi: 10.1007/BF02039703
(58) Maya, L.; Begun, G. J. Inorg. Nucl. Chem. 1981, 43, 2827. doi: 10.1016/0022-1902(81)80625-2
(59) Schlegel, M. L.; Descostes, M. Environ. Sci. Technol. 2009, 43, 8593. doi: 10.1021/es902001k
(60) Den Auwer, C.; Simoni, E.; Conradson, S.; Madic, C. J. Inorg. Chem. 2003, 2003, 3843. doi: 10.1002/ejic.200300093
(61) Kerisit, S.; Liu, C. J. Phys. Chem. A 2013, 117, 6421. doi: 10.1021/jp404594p
(62) Chessin, H.; Hamilton, W. C.; Post, B. Acta Crystallogr. 1965, 18, 689. doi: 10.1107/S0365110X65001585
(63) Rahman, A. Phys. Rev. 1964, 136, A405. doi: 10.1103/PhysRev.136.A405
(64) Kelly, S. D.; Kemner, K. M.; Brooks, S. C. Geochim. Cosmochim. Acta 2007, 71, 821. doi: 10.1016/j.gca.2006.10.013
(65) De Jong, W. A.; Aprà, E.; Windus, T. L.; Nichols, J. A.; Harrison, R. J.; Gutowski, K. E.; Dixon, D. A. J. Phys. Chem. A 2005, 109, 11568. doi: 10.1021/jp0541462
(66) Zhang, L.; Su, J.; Yang, S.; Guo, X.; Jia, Y.; Chen, N.; Zhou, J.; Zhang, S.; Wang, S.; Li, J.; Li, J.; Wu, G.; Wang, J. Ind. Eng. Chem. Res. 2015, 55, 4224. doi:10.1021/acs.iecr.5b03217
(67) Kerisit, S.; Liu, C. Environ. Sci. Technol. 2012, 46, 1632. doi: 10.1021/es2027696
(68) Mills, R. J. Phys. Chem. 1973, 77, 685. doi: 10.1021/j100624a025

[1] 姚婵, 李国艳, 许彦红. 富羧酸基团的共轭微孔聚合物:结构单元对孔隙和气体吸附性能的影响[J]. 物理化学学报, 2017, 33(9): 1898-1904.
[2] 刘夫锋, 范玉波, 刘珍, 白姝. ZAβ3和Aβ16-40亲和作用的分子机理解析[J]. 物理化学学报, 2017, 33(9): 1905-1914.
[3] 张晨辉, 赵欣, 雷津美, 马悦, 杜凤沛. 非离子表面活性剂Triton X-100溶液在不同生长期小麦叶片表面的润湿行为[J]. 物理化学学报, 2017, 33(9): 1846-1854.
[4] 王子民, 郑默, 谢勇冰, 李晓霞, 曾鸣, 曹宏斌, 郭力. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7): 1399-1410.
[5] 曹了然, 张春煜, 张鼎林, 楚慧郢, 张跃斌, 李国辉. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报, 2017, 33(7): 1354-1365.
[6] 韩波, 程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[7] 陈芳, 刘圆圆, 王建龙, 苏宁宁, 李丽洁, 陈红春. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.
[8] 莫周胜, 秦玉才, 张晓彤, 段林海, 宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报, 2017, 33(6): 1236-1241.
[9] 陈贻建, 周洪涛, 葛际江, 徐桂英. 双链阴离子表面活性剂1-烷基-癸基磺酸钠在气/液界面聚集行为:分子动力学模拟研究[J]. 物理化学学报, 2017, 33(6): 1214-1222.
[10] 代卫国, 何丹农. 手性布洛芬对映体的选择性光电化学氧化[J]. 物理化学学报, 2017, 33(5): 960-967.
[11] 贺雷, 张向倩, 陆安慧. 二维炭基多孔材料的合成及应用[J]. 物理化学学报, 2017, 33(4): 709-728.
[12] 杨绍斌, 李思南, 沈丁, 唐树伟, 孙闻, 陈跃辉. 双空位缺陷双层石墨烯储钠性能的第一性原理研究[J]. 物理化学学报, 2017, 33(3): 520-529.
[13] 程昉, 王汉奇, 许旷, 何炜. 基于二硫代氨基甲酸盐自组装的糖芯片制备与表征[J]. 物理化学学报, 2017, 33(2): 426-434.
[14] 刘青康, 宋文平, 黄其涛, 张广玉, 侯珍秀. 热辅助存储磁盘硅掺杂非晶碳薄膜氧化的ReaxFF反应力场分子动力学模拟[J]. 物理化学学报, 2017, 33(12): 2472-2479.
[15] 孙怡然, 于飞, 马杰. 纳米受限水的研究进展[J]. 物理化学学报, 2017, 33(11): 2173-2183.