Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2029-2034    DOI: 10.3866/PKU.WHXB201705121
论文     
4.81%光电转换效率的全固态致密PbS量子点薄膜敏化TiO2纳米棒阵列太阳电池
陈军军,史成武*(),张正国,肖冠南,邵章朋,李楠楠
4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays
Jun-Jun CHEN,Cheng-Wu SHI*(),Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI
 全文: PDF(1503 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

利用TiO2纳米棒阵列和在旋涂辅助连续离子层吸附反应过程中使用乙二硫醇的策略,成功地在TiO2纳米棒阵列上获得了致密PbS量子点薄膜,组装了新颖结构的全固态致密PbS量子点薄膜敏化TiO2纳米棒阵列太阳电池。研究了TiO2纳米棒阵列长度对全固态致密PbS量子点薄膜敏化太阳电池光伏性能的影响,发现TiO2纳米棒阵列长度为290、540和1040 nm时,相应太阳电池的光电转换效率分别是2.02%、4.81%和1.95%。对于组装全固态量子点敏化太阳电池,综合考虑空穴传输长度和量子点担载量的平衡是获得较高光电转换效率的关键所在。

关键词: 致密PbS量子点薄膜TiO2纳米棒阵列乙二硫醇连续离子层吸附反应全固态量子点敏化太阳电池    
Abstract:

A compact PbS quantum-dot thin film was prepared using the combination of TiO2 nanorod arrays and 1, 2-ethanedithiol following the spin-coating assisted successive ionic layer absorption and reaction procedure. Solar cells with the novel structure of FTO/compact PbS quantum-dot thin film sensitized TiO2 nanorod arrays/spiro-OMeTAD/Au were assembled. Subsequently, the influence of the length of TiO2 nanorod arrays on the photovoltaic performance of all-solid-state compact PbS quantum-dot thin film sensitized solar cells was evaluated. The corresponding solar cells having TiO2 nanorod array lengths of 290, 540, and 1040 nm achieved photoelectric conversion efficiencies (PCE) of 2.02%, 4.81%, and 1.95%, respectively. These results reveal that in order to achieve high PCE values with the all-solid-state quantum dot sensitized solar cells, it is very important to balance the hole diffusion length with the loading amount of quantum-dots.

Key words: Compact PbS quantum-dot thin film    TiO2 nanorod array    1, 2-Ethanedithiol    Successive ionic layer adsorption and reaction    Solid-state quantum-dot sensitized solar cell
收稿日期: 2017-02-20 出版日期: 2017-05-12
中图分类号:  O649  
基金资助: 国家自然科学基金(51272061);国家自然科学基金(51472071)
通讯作者: 史成武     E-mail: shicw506@foxmail.com; shicw506@hfut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈军军
史成武
张正国
肖冠南
邵章朋
李楠楠

引用本文:

陈军军,史成武,张正国,肖冠南,邵章朋,李楠楠. 4.81%光电转换效率的全固态致密PbS量子点薄膜敏化TiO2纳米棒阵列太阳电池[J]. 物理化学学报, 2017, 33(10): 2029-2034.

Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays. Acta Phys. -Chim. Sin., 2017, 33(10): 2029-2034.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705121        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2029

Fig 1  Surface and cross-sectional SEM images of the TiO2 nanorod arrays. The growth time: (a, d) 75 min, (b, e) 100 min, (c, f) 120 min.
Growth time/min Length/nm Diameter/nm Areal density/μm-2
75 290 15 710
100 540 20 530
120 1040 24 300
Table 1  Lengths, diameters and areal densities of the TiO2 nanorod arrays.
Fig 2  XRD patterns of the TiO2 nanorod arrays.
Fig 3  UV-Vis spectra of the TiO2 nanorod arrays.
Fig 4  Surface and cross-sectional SEM images of the compact PbS QD thin film sensitized TiO2 nanorod array. The TiO2 nanorod length: (a, d) 290 nm, (b, e) 540 nm, (c, f) 1040 nm.
Fig 5  XRD patterns (a) and high-resolution XRD patterns (b) of the compact PbS QD thin film sensitized TiO2 nanorod arrays.
Fig 6  HRTEM image of the compact PbS QD thin film sensitized TiO2 nanorod arrays.
Fig 7  UV-Vis absorption spectra of the compact PbS QD thin film sensitized TiO2 nanorod arrays.
TiO2 nanorod array length/nm Hole transporting layer Voc/V Jsc/(mA·cm-2) FF/% PCE/%
290 With spiro-OMeTAD 0.52 6.65 58.86 2.02
540 With spiro-OMeTAD 0.51 15.32 61.24 4.81
1040 With spiro-OMeTAD 0.55 6.94 51.29 1.95
540 Without spiro-OMeTAD 0.52 4.63 47.10 1.13
Table 2  Photovoltaic performance parameters of all solid-state compact PbS QD thin film sensitized TiO2 nanorod array solar cells
Fig 8  Photocurrent-photovoltage characteristics of all solid-state compact PbS QD thin film sensitized TiO2 nanorod array solar cells (a) and the cross-sectional SEM image of the solar cell with the best PCE (b).
1 González-Pedro V. ; Sima C. ; Marzari G. ; Boix P. P. ; Giménez S. ; Shen Q. ; Dittrich T. ; Mora-Seró I. Phys. Chem. Chem. Phys. 2013, 15, 13835.
doi: 10.1039/c3cp51651b
2 Zhang X. ; Justo Y. ; Maes J. ; Walravens W. ; Zhang J. ; Liu J. ; Hens Z. ; Johansson E. M. J. J. Mater. Chem. A 2015, 3, 20579.
doi: 10.1039/c5ta07111a
3 Jang J. ; Shim H. C. ; Ju Y. ; Song J. H. ; An H. ; Yu J. S. ; Kwak S. W. ; Lee T. M. ; Kim I. ; Jeong S. Nanoscale 2015, 7, 8829.
doi: 10.1039/c5nr01508a
4 Gao J. ; Perkins C. L. ; Luther J. M. ; Hanna M. C. ; Chen H. Y. ; Semonin O. E. ; Nozik A. J. ; Elingson R. J. ; Beard M. C. Nano Lett. 2011, 11, 3263.
doi: 10.1021/nl2015729
5 Lan X. ; Voznyy O. ; Kiani A. ; Garcia de Arquer F. P. ; Abbas A. S. ; Kim G. H. ; Liu M. ; Yang Z. ; Walters G. ; Xu J. ; Yuan M. ; Ning Z. ; Fan F. ; Kanjanaboos P. ; Kramer I. ; Zhitomirsky D. ; Lee P. ; Perelgut A. ; Hoogland S. ; Sargent E. H. Adv. Mater. 2016, 28, 299.
doi: 10.1002/adma.201503657
6 Jiao S. ; Wang J. ; Shen Q. ; Li Y. ; Zhong X. J.Mater. Chem. A 2016, 4, 7214.
doi: 10.1039/c6ta02465c
7 Im S. H. ; Kim H. ; Kim S. W. ; Kim S. W. ; Seok S. I. Energy Environ. Sci. 2011, 4, 4181.
doi: 10.1039/c1ee01774h
8 Tao L. ; Xiong Y. ; Liu H. ; Shen W. Nanoscale 2014, 6, 931.
doi: 10.1039/c3nr04461k
9 Han M. ; Jia J. ; Yu L. ; Yi G. RSC Adv. 2015, 5, 51493.
doi: 10.1039/c5ra07409f
10 Kim H. S. ; Lee J. W. ; Yantara N. ; Boix P. P. ; Kulkarni S. A. ; Mhaisalkar S. ; Gr?tzel M. ; Park N. G. Nano Lett. 2013, 13, 2412.
doi: 10.1021/nl400286w
11 Liu B. ; Aydil E. S. J.Am. Chem. Soc. 2009, 131, 3985.
doi: 10.1021/ja8078972
12 Zhang J. ; Shi C. ; Chen J. ; Wang Y. ; Li M. J.Solid State Chem. 2016, 238, 223.
doi: 10.1016/j.jssc.2016.03.033
13 Wu N. ; Shi C. ; Ying C. ; Zhang J. ; Wang M. Appl. Surf. Sci. 2015, 357, 2372.
doi: 10.1039/c5nr03511b
14 Wang Y. Q. ; Li L. ; Nie L. H. ; Li N. N. ; Shi C. W. Acta Phys. -Chim. Sin. 2016, 32, 2724.
doi: 10.3866/PKU.WHXB201607272
王艳青; 李龙; 聂林辉; 李楠楠; 史成武. 物理化学学报, 2016, 32, 2724.
doi: 10.3866/PKU.WHXB201607272
15 Jung J. Y. ; Zhou K. ; Um H. D. ; Guo Z. ; Jee S. W. ; Park K.T. ; Lee J. H. Opt. Lett. 2011, 36, 2677.
doi: 10.1364/OL.36.002677
16 Yu L. ; Jia J. ; Yi G. ; Han M. RSC Adv. 2016, 6, 33279.
doi: 10.1039/c6ra02543a
[1] 谭淼, 张磊, 梁万珍. 基于二维材料WX2构建的范德华异质结的结构和性质及应变效应的理论研究[J]. 物理化学学报, 0, (): 0-0.
[2] 薛佩瑶, 张俊祥, 辛景明, RECH Jeromy, 李腾飞, 孟凯鑫, 王嘉宇, 马伟, 尤为, MARDER Seth R., 韩平畴, 占肖卫. 第三组份端基对有机太阳能电池性能的影响[J]. 物理化学学报, 0, (): 0-0.
[3] 刘磊, 郝亚亚, 邓素辉, 王坤, 李江, 王丽华, 樊春海, 李嘉隽, 柳华杰. 构建多模式全光谱暗场显微镜用于纳米单颗粒局域表面等离子共振实时动力学研究[J]. 物理化学学报, 0, (): 0-0.
[4] 曹丹丹, 吕荣, 于安池. 高光学质量氮化碳薄膜的制备和表征[J]. 物理化学学报, 0, (): 0-0.
[5] 毕富珍, 郑晓, 任志勇. 甲胺基-甲脒基混合钙钛矿的第一性原理研究[J]. 物理化学学报, 0, (): 0-0.
[6] 李少海,翁波,卢康强,徐艺军. 聚胺界面修饰改善碳量子点可见光光敏化性能[J]. 物理化学学报, 2018, 34(6): 708-718.
[7] 张书山, 周剑章, 吴德印, 田中群. Ag纳米粒子修饰光纤探针在等离激元催化反应中的应用[J]. 物理化学学报, 0, (): 0-0.
[8] 陈陆, 刘军, 王勇, 张泽. α-Cu2Se精细结构的球差校正扫描透射电镜表征[J]. 物理化学学报, 0, (): 0-0.
[9] 黄鹏,元利刚,李耀文,周祎,宋波. 左旋多巴和N, N-二甲基亚砜共掺杂PEDOT:PSS作为空穴传输层的高性能p-i-n型钙钛矿太阳能电池[J]. 物理化学学报, 2018, 34(11): 1264-1271.
[10] 袁俊,刘晔,朱灿,沈平,万梅秀,冯柳柳,邹应萍. 基于侧链不对称喹喔啉聚合物的高效非富勒烯太阳电池[J]. 物理化学学报, 2018, 34(11): 1272-1278.
[11] 张婧,何有军,闵杰. 钙钛矿太阳能电池中小分子空穴传输材料的研究进展[J]. 物理化学学报, 2018, 34(11): 1221-1238.
[12] 韩杰,梁秋菊,曲轶,刘剑刚,韩艳春. 基于苝二酰亚胺类非富勒烯受体共混体系凝聚态结构调控[J]. 物理化学学报, 2018, 34(4): 391-406.
[13] 曹梦雄,王兴宇,马亚茹,马春林,周卫平,王晓雄,王海欧,谭伟石. 点缺陷引起中子辐照MgO(110)单晶的铁磁性[J]. 物理化学学报, 2018, 34(4): 437-444.
[14] 李勇军,李玉良. 石墨炔的化学修饰及功能化[J]. 物理化学学报, 2018, 34(9): 992-1013.
[15] 陈熙,张胜利. 基于3d元素掺杂的石墨二炔分子传感材料性能调控[J]. 物理化学学报, 2018, 34(9): 1061-1073.