Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 1978-1988    DOI: 10.3866/PKU.WHXB201705124
论文     
双碳醇水溶液的1H NMR实验与理论分析
叶斌1,张健2,高才1,*(),唐景春1
1 合肥工业大学汽车与交通工程学院,合肥230009
2 合肥工业大学电气与自动化工程学院,合肥230009
Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions
Bin YE1,Jian ZHANG2,Cai GAO1,*(),Jing-Chun TANG1
1 School of Automobile and Transportation Engineering, Hefei University of Technology, Hefei 230009, P. R. China
2 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, P. R. China
 全文: PDF(1885 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

采用核磁共振氢谱(1H NMR)和量子化学(QC)方法研究不同温度下乙醇水溶液和乙二醇水溶液中醇与水之间的相互作用。观察实验结果发现两种醇水溶液中水质子的化学位移呈现两种不同的变化趋势。随着含水量的增加,乙醇(ET)水溶液中水质子化学位移急剧降低,而乙二醇(EG)水溶液中水质子的化学位移缓慢增加。两种醇水溶液中的羟基质子随着浓度的增加,其共振峰移向低场。不同温度下随着浓度的增加两种醇水溶液的烷基质子共振峰单调的移向低场。几何结构优化结果表明醇羟基质子与水质子之间氢键的形成弱化了醇中O-H键,从而导致其键长增加。值得注意的是在相同的极化作用和扩散作用下采用密度泛函理论(DFT)(B3LYP)计算得到的ET和EG的C-H键,C-C键和O-H键的键长值大于采用HF理论计算得到的结果。与此相反的是采用HF理论得到的ET和EG的O-H…O键强度大于采用DFT(B3LYP)理论得到的结果。几何构型优化结果与实验结果相吻合。在NMR化学位移的计算中,就文中所提到的理论水平而言,DFT要优于HF。而对于同一理论,其基组越大,计算值越接近实验值。

关键词: 乙醇乙二醇核磁共振氢谱化学位移Hartree-Fork理论密度泛函理论    
Abstract:

In this study, 1H nuclear magnetic resonance (NMR) measurements and quantum chemistry (QC) studies of ethanol (ET)-water mixtures and ethylene glycol (EG)-water mixtures are carried out at different temperatures to discuss the interactions between water and the alcohols present in the mixtures. From 1H NMR spectra, it is observed that the chemical shift of the water proton shows two different trends in the ET-water mixtures and the EG-water mixtures. With increasing water concentration, the water proton chemical shift decreases dramatically for ET-water mixtures, while the chemical shift increases slowly for EG-water mixtures. The alcohol hydroxyl proton resonance peaks of both ET and EG shift to lower field with decreasing water concentration. It is found that the resonance peaks of all alkyl protons shift monotonically to low field with increasing alcohol concentration at different temperatures. The geometry optimization results indicate the formation of H-bonds between the water molecules and the hydroxyl groups of the alcohols alongside the weakening of O-H bonds in the alcohols, which results in an O-H bond length decrease. It is interesting to note that the bond length values computed for C-C, C-H and O-H bond in both ET and EG are larger when calculated at the density functional theory (DFT) (B3LYP) level than when calculated using Hartree-Fock (HF) level of theory with the same polarization function and diffusion function. However, the O-H…O H-bond computed at HF level of theory is stronger than that calculated at DFT level of theory. The theoretical results are in good agreement with the experimental ones. In the calculation of NMR chemical shift, DFT(B3LYP) is better than HF, which implies that for the same method, the larger the basis sets are, the more accurate are the calculated values.

Key words: Ethanol    Ethylene glycol    1H Nuclear magnetic resonance    Chemical shift    Hartree-Fork level of theory    Density functional theory
收稿日期: 2017-04-06 出版日期: 2017-05-12
中图分类号:  O641  
通讯作者: 高才     E-mail: gao_cai@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
叶斌
张健
高才
唐景春

引用本文:

叶斌,张健,高才,唐景春. 双碳醇水溶液的1H NMR实验与理论分析[J]. 物理化学学报, 2017, 33(10): 1978-1988, 10.3866/PKU.WHXB201705124

Bin YE,Jian ZHANG,Cai GAO,Jing-Chun TANG. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions. Acta Phys. -Chim. Sin., 2017, 33(10): 1978-1988, 10.3866/PKU.WHXB201705124.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705124        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/1978

Fig 1  Chemical structures of ET and EG molecules (a) chemical formula of ET (b) chemical formula of EG.
Fig 2  1H NMR spectra of EG-water mixtures as a function of water volume fraction, ywater = 5%, 20% at T = 300.15 K.
Fig 3  Experimental proton chemical shift of H2O protons and hydroxyl protons in ET and EG solutions relative to an external TMS reference. (at T = 300.15 K).
Fig 4  Mole fraction dependence of experimental 1H chemical shift of the alkyl proton of ET in ET-water mixtures at different temperature. (a) methylene(-CH2) proton; (b) methyl(-CH3) proton.
Fig 5  Mole fraction dependence of experimental 1H chemical shift of the alkyl proton of EG in EG-water mixtures at different temperature.
Fig 6  Mole fraction dependence of 1H chemical shifts for δsol(X) and δsolΔ(X) in ET-water and EG-water mixture.(at T=300.15 K). (a) is for ET; (b) is for EG δsol(X)—the weighted average chemical shift of hydroxyl protons of alcohol and water in the actual mixtures; δsolΔ(X)—the chemical shift of an ideal mixture in which there is no interaction between solute and solvent.
Fig 7  Optimized structural parameters of the ET + 2H2O complex and the EG + 3H2O in solvation phase.
AtomAtomAngle atomHF/6-311 G++(d, p) levelB3LYP/6-311 G++(d, p) level
bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15140.1517
H(3)C(1)C(2)0.1086110.3500.1093110.546
H(4)C(1)C(2)0.1085110.4590.1093110.545
H(5)C(1)C(2)0.1085110.4590.1094110.436
H(6)C(2)C(1)0.1089110.0400.1098110.162
H(7)C(2)C(1)0.1089110.0400.1098110.162
O(8)C(2)C(1)0.1406108.3890.1431107.988
H(9)O(8)C(2)0.0940110.1990.0962108.972
Table 1  Optimized structural parameters of the ET monomer in gas phase calculated at HF/6-311 G++(d, p) and B3LYP/6-311 G++(d, p) level of theory.
AtomAtomAngle atomHF/6-311 G++(d, p) levelB3LYP/6-311 G++(d, p) levelHF/6-311 G(d) level
bond length/nmangle/(°)bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15170.15190.1513
H(3)C(1)C(2)0.1086110.7070.1096110.7960.1085110.756
H(4)C(1)C(2)0.1086110.7030.1096110.5790.1084110.573
H(5)C(1)C(2)0.1086110.1040.1096110.4070.1084110.562
H(6)C(2)C(1)0.1087110.2320.1099110.1650.1086110.247
H(7)C(2)C(1)0.1087110.2450.1100110.2910.1087110.347
O(8)C(2)C(1)0.1412108.8490.1433108.7870.1409108.743
H(9)O(8)C(2)0.0968110.5570.0988107.8890.0946109.975
H(11)O(10)H(12)0.0949106.6120.987104.0480.0946107.617
O(8)H(11)O(10)0.2047170.5120.1837170.8230.1989170.366
O(13)H(9)O(8)0.2141145.4140.1855154.4560.1998152.546
H(14)O(10)O(13)0.2096170.3380.1842170.0540.1998170/683
Table 2  Optimized structural parameters of the ET + 2H2O complex in solvation phase calculated at HF/6-311 G++(d, p) and B3LYP/6-311 G++(d, p) level of theory.
AtomAtomAngle atomHF/6-311 G(d) levelB3LYP/6-311 G(d) level
bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15070.1511
H(3)C(1)C(2)0.1089109.0390.1101108.827
H(4)C(1)C(2)0.1087108.6760.1098108.354
H(5)C(2)C(1)0.1089109.0390.1101108.827
H(6)C(2)C(1)0.1087108.6760.1098108.353
O(7)C(2)C(1)0.1399109.0090.1421108.798
H(8)O(7)C(2)0.0939110.3370.0962108.680
O(9)C(1)C(2)0.1399109.0090.1422108.798
H(10)O(9)C(1)0.0939110.3360.0962108.679
Table 3  Optimized structural parameters of the EG monomer in gas phase calculated at HF/6-311 G(d) and B3LYP/6-311 G(d) level of theory
AtomAtomAngle atomHF/6-311 G(d) levelB3LYP/6-311 G(d) levelB3LYP/6-311 G++(d, p) level
bond length/nmangle/(°)bond length/nmangle/(°)bond length/nmangle/(°)
C(2)C(1)0.15160.15220.1524
H(3)C(1)C(2)0.1083109.2550.1093109.0410.1093108.832
H(4)C(1)C(2)0.1086109.9900.1095109.9670.1095110.189
H(5)C(2)C(1)0.1085109.0130.1094108.5820.1095108.432
H(6)C(2)C(1)0.1084109.5620.1094109.5320.1094109.989
O(7)C(2)C(1)0.1409111.4230.1433112.3560.1437112.179
H(8)O(7)C(2)0.0959109.6920.0978107.9960.0981107.576
O(9)C(1)C(2)0.1409112.4900.1433113.3090.1436113.124
H(10)O(9)C(1)0.0958108.9830.0982106.9020.0977106.813
O(11)H(10)O(9)0.1955157.3470.1781158.5610.1885155.792
H(12)O(7)H(11)0.1982171.1420.1802172.1640.1846172.296
H(8)O(14)O(7)0.1876166.8720.1715168.5220.1795168.423
H(16)O(17)O(14)0.1877165.6490.1722168.0280.1787166.191
H(18)O(9)O(17)0.1924175.9180.1767176.4560.1800175.819
Table 4  Optimized structural parameters of the EG +3H2O complex in solvation phase calculated at HF/ 6-311 G(d)and B3LYP/ 6-311 G(d) level of theory
Atom theory level1H NMR chemical shift /
EXPHF/6-31GHF/6-311GHF/6-311G++(d, p)B3LYP/6-31GB3LYP/6-311GB3LYP/6-311G++(d, p)
H(8) H(10)5.294.674.735.025.455.365.27
H(12) H(13) H(15) H(16) H(18) H(19)5.024.584.764.885.255.125.04
H(3) H(4) H(5) H(6)3.673.823.753.613.793.743.60
Table 5  1H NMR chemical shift theoretical computation data of EG aqueous solution at different theory levels (Opt B3LYP/ 6-311 G++(d, p))
Fig 8  Experimental and theoretic chemical shift of hydroxyl proton in the EG-water mixtures at T = 300.15 K.
1 Raman M. S. ; Ponnuswamy V. ; Kolandaivel P. ; Perumal K. J. Mol. Liq. 2007, 135 (1-3), 46.
doi: 10.1016/j.molliq.2006.10.011
2 Fang Y. J. ; Zhou P. Sep. Sci. Technol. 2006, 41 (2), 329.
doi: 10.1080/01496390500460666
3 Zhou Y. ; Hu K. ; Shen J. ; Wu X. ; Cheng G. J. Mol. Struct. 2009, 921 (1), 150.
doi: 10.1016/j.molstruc.2008.12.050
4 Chen C. ; Li W. Z. Acta Phys. -Chim. Sin. 2009, 25 (3), 507.
陈聪; 李维仲. 物理化学学报, 2009, 25 (3), 507.
5 Zhao J. F. ; Sun X. L. ; Li J. L. ; Huang X. R. Acta Phys. -Chim. Sin. 2015, 31 (6), 1077.
赵俊凤; 孙小丽; 李吉来; 黄旭日. 物理化学学报, 2015, 31 (6), 1077.
6 Gao C. ; Wang T. J. ; Liu X. N. ; Zhou G. Y. ; Hua T. C. Chin. J. Chem. Phys. 2007, 20 (3), 258.
doi: 10.1088/1674-0068/20/03/258-264
7 Ye B. ; Gao C. ; Liu X. N. ; Yang S. ; Jiang B. Acta Phys. -Chim. Sin. 2011, 27 (5), 1031.
叶斌; 高才; 刘向农; 杨锁; 江斌. 物理化学学报, 2011, 27 (5), 1031.
8 Sengwa R. J. ; Sankhla S. ; Shinyashiki N. J. Phys. Chem. 2008, 94 (17), 6889.
doi: 10.1007/s10953-007-9230-6
9 Ye B. ; Gao C. ; Zhao H. ; Chen K. S. ; Yang S. ; Liu X. N. Acta Phys. -Chim. Sin. 2011, 27 (11), 2505.
叶斌; 高才; 赵韩; 陈开松; 杨锁; 刘向农. 物理化学学报, 2011, 27 (11), 2505.
10 Zhang N. ; Li W. Z. ; Chen C. ; Zuo J. ; Weng L. D. Bull. Korean Chem. Soc. 2013, 34 (9), 2711.
doi: 10.5012/bkcs.2013.34.9.2711
11 Zhang N. ; Li W. Z. ; Chen C. ; Zuo J. ; Weng L. D. Mol. Phys. 2013, 111 (7), 939.
doi: 10.1080/00268976.2012.760050
12 Chen C. ; Li W. Z. ; Song Y. C. ; Weng L. D. ; Zhang N. Mol. Phys. 2012, 110 (5), 283.
doi: 10.1080/00268976.2011.641602
13 Lee M. ; Hong M. J. Biomol. NMR 2014, 59 (4), 263.
doi: 10.1007/s10858-014-9845-z
14 Raman M. S. ; Ponnuswamy V. ; Kolandaivel P. ; Perumal K. J. Mol. Liq. 2008, 142 (1-3), 10.
doi: 10.1016/j.molliq.2008.03.006
15 Mizuno K. ; Miyashita Y. ; Shindo Y. ; Ogawa H. J. Phys. Chem. 1995, 99 (10), 3225.
doi: 10.1021/j100010a037
16 Zhang S. ; Yang P. J. Chin. Soc. Corros. Prot. 2004, 24 (4), 240.
张士国; 杨频. 中国腐蚀和防护学报, 2004, 24 (4), 240.
17 Zarzycki P. ; Rustad J. R. J. Phys. Chem. A 2009, 113 (1), 291.
doi: 10.1021/jp805737a
18 Lüsse S. ; Arnold K. Macromolecules 1996, 29 (12), 4251.
doi: 10.1021/ma9508616
19 Song B. T. ; Chu Y. Y. ; Wang J. Q. ; Zheng A. M. ; Deng F. Chin. J. Magn. Reson. 2016, 33 (3), 378.
doi: 10.11938/cjmr20160303
宋本腾; 褚月英; 王吉清; 郑安民; 邓风. 波谱学杂志, 2016, 33 (3), 378.
doi: 10.11938/cjmr20160303
20 Li W. ; Zhang J. ; Qi C. S. Acta Phys. -Chim. Sin. 2015, 31 (9), 1690.
李巍; 张静; 戚传松. 物理化学学报, 2015, 31 (9), 1690.
21 Zhang X. X ; Chen Q. ; Hu W.H. ; Zhang J. B. Appl. Surf. Sci 2013, 286 (12), 47.
doi: 10.1016/j.apsusc.2013.09.005
22 Lan R. ; Li H. R. ; Han S. J. Acta Phys. -Chim. Sin. 2005, 21 (11), 1295.
蓝蓉; 李浩然; 韩世钧. 物理化学学报, 2005, 21 (11), 1295.
23 Liao L. M. ; Huang X. ; Li J. F. Chin. J. Magn. Reson. 2016, 33 (3), 368.
doi: 10.11938/cjmr20160302
廖立敏; 黄茜; 李建凤. 波谱学杂志, 2016, 33 (3), 368.
doi: 10.11938/cjmr20160302
24 Wang Y. H. ; Li X. Y. ; Zeng Y. L. ; Meng L. P. ; Zhang X. Y. Acta Phys. -Chim. Sin. 2016, 32 (3), 671.
王月红; 李晓艳; 曾艳丽; 孟令鹏; 张雪英. 物理化学学报, 2016, 32 (3), 671.
25 Xu X. ; Xu Z.. ; Luo Y. F. Acta Phys. -Chim. Sin. 2002, 18 (5), 420.
doi: 10.3866/PKU.WHXB20020508
许旋; 徐志广; 罗一帆. 物理化学学报, 2002, 18 (5), 420.
doi: 10.3866/PKU.WHXB20020508
26 Wang Y. N. ; Jin Q. ; Li H. D. ; Wang C. J. Chin. J. Magn. Reson. 2015, 32 (3), 528.
doi: 10.11938/cjmr20150314
王燕妮; 金芩; 李慧丹; 王朝杰. 波谱学杂志, 2015, 32 (3), 528.
doi: 10.11938/cjmr20150314
27 Mizuno K. ; Kimura Y. ; Morichika H. ; Nishimura Y. ; Shimada S. ; Maeda S. ; Imafuji S. ; Ochi T. J. Mol. Liq. 2000, 85 (1-2), 139.
doi: 10.1016/S0167-7322(99)00170-1
28 Covington, A. K. ; Newman, K. E. Modern Aspects of Electrochemistry; Bockris, J. OM. ; Conway, B. E. ; Eds. ; Pergamon: Oxford, U. K. ; 1977; Vol. 12, pp 41-129.
29 Pople, J. A. ; Schneider, W. G. ; Barnstein, H. J. High Resolution NMR, 2nd ed. ; McGraw-Hill: New York, 1967;pp 16-136.
30 Selwood, P. W. Magnetochemistry, 1nd ed. ; Interscience: NewYork, 1943; pp 12-129.
31 Hinton, J. F. ; Wolinski, K. Ab initio GIAO MagneticShielding Tensor for Hydrogen-bonded Systems. InTheoretical Treatments of Hydrogen Bonding; Hadzi, D. ; Ed. ; Wiley: Chichester, U. K. ; 1997; p 75.
32 Chesnut, D. B. The Ab Initio Computation of NuclearMagnetic Resonance Chemical shielding. In Reviews in Computational Chemistry; Lepkowitz, K. B. , Boyd, D. B. , Eds. ; VCH Publishers: New York, 1996; Vol. 8, pp 245-297.
33 Fleischer, U. ; van Wüllen, C. ; Kutzelnigg, W. NMR Chemical Shift Computation: Ab Initio in Encyclopedia of Computational Chemistry; Wiley: New York, 1998; Vol. 3, pp 35-67.
34 Cheeseman J. R. ; Trucks G. W. ; Keith T. A. ; Frisch M. J. J. Chem. Phys. 1996, 104 (14), 5497.
doi: 10.1063/1.471789
35 Hohenberg P. ; Kohn W. Phys. Rev. B 1964, 136 (3), 864.
doi: 10.1103/PhysRev.136.B864
36 Kohn W. ; Sham L. J. Phys. Rev. A 1965, 137 (6A), 1697.
doi: 10.1103/PhysRev.137.A1697
37 Holmes J. R. ; Kivelson D. ; Drinkard W. C. J. Am. Chem. Soc. 1962, 84 (24), 4677.
doi: 10.1021/ja00883a013
38 Forsyth M. ; Macfarlane D. R. J. Phys. Chem. 1990, 94 (17), 6889.
doi: 10.1021/j100380a064
39 Gu Y. ; Kar T. ; Scheiner S. J. Am. Chem. Soc. 1999, 121 (40), 9411.
doi: 10.1021/Ja991795g
40 Nagamachi M. Y. ; Francesconi A. Z. J. Chem. Thermodynamics 2006, 38 (4), 461.
doi: 10.1016/j.jct.2005.06.018
41 Dixit S. ; Crain J. ; Poon W. C. ; Finney J. L. ; Soper A. K. Nature 2002, 416 (6883), 829.
doi: 10.1038/416829a
42 Mizuno K. ; Imafuji S. ; Fujiwara T. ; Ohta T. ; Tamiya Y. J. Phys. Chem. B. 2003, 107 (16), 3972.
doi: 10.1021/jp021712+
43 Zana R. ; Eljebari M. J. J. Phys. Chem. 1993, 97 (42), 11134.
doi: 10.1021/j100144a039
44 Nishi N. ; Koga K. ; Ohshima C. ; Yamamoto K. ; Nagashima U. ; Nagami K. J. Am. Chem. Soc. 1988, 110 (16), 5246.
doi: 10.1021/ja00224a002
45 D'Arrigo G. ; Teixeira J. J. Chem. Soc. Faraday Trans. 1990, 86 (9), 1503.
doi: 10.1039/FT9908601503
[1] 郭肖红,周影,石利红,张彦,张彩红,董川,张国梅,双少敏. 基于乙醇和铝离子聚集诱导的铜纳米团簇[J]. 物理化学学报, 2018, 34(7): 818-824.
[2] 许文武,高嶷. 巯基保护的中空金纳米球[J]. 物理化学学报, 2018, 34(7): 770-775.
[3] 卢天,陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.
[4] 尹凡华,谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256-262.
[5] 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[6] 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[7] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[8] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[9] 宁红岩,杨其磊,杨晓,李鹰霞,宋兆钰,鲁逸人,张立红,刘源. 碳纤维负载Rh-Mn紧密接触的催化剂及其合成气制乙醇催化性能[J]. 物理化学学报, 2017, 33(9): 1865-1874.
[10] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[11] 刘玉玉,李杰伟,薄一凡,杨磊,张效霏,解令海,仪明东,黄维. 芴基张力半导体结构和光电性质的理论研究[J]. 物理化学学报, 2017, 33(9): 1803-1810.
[12] 徐位云,汪丽莉,宓一鸣,赵新新. Fe原子吸附对单层WS2结构和性质的影响[J]. 物理化学学报, 2017, 33(9): 1765-1772.
[13] 韩波,程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[14] 郭姿含,胡竹斌,孙真荣,孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.
[15] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.