Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2072-2081    DOI: 10.3866/PKU.WHXB201705127
研究论文     
氢氟酸加入量对钛基半导体结构演变及光催化性能的影响
张昊, 李新刚, 蔡金孟, 王亚婷, 武墨青, 丁彤, 孟明, 田野
天津大学化工学院, 天津化学化工协同创新中心, 天津市应用催化科学与工程重点实验室, 天津 300072
Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors
ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye
School of Chemical Engineering & Technology, Tianjin University, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Engineering, Tianjin 30072, China
 全文: PDF(2653 KB)   输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

以钛酸丁酯为钛源,氢氟酸为氟源,采用溶剂热法制备了一系列钛基半导体纳米晶,考察了氢氟酸加入量对纳米晶结构演变的影响,并通过光催化产氢、光降解罗丹明B及瞬态光电流响应测试了所得纳米晶的光催化性能。当不加氢氟酸时,所得纳米晶为TiO2纳米颗粒,主要暴露{101}面。加入少量氢氟酸时,所得纳米晶为主要暴露{001}面的TiO2纳米片,这是由于氟离子吸附于纳米晶表面,降低{001}面表面能所致。由于{001}面与{101}面间的晶面异质结促进了载流子分离,该样品表现出了最高的光催化性能。继续增加氢氟酸加入量,氟离子开始进入晶格构成新晶相,所得纳米晶的表面与体相均形成TiO2与TiOF2混合相,形貌呈现片层堆叠结构,光催化性能下降。当进一步增加氢氟酸加入量后,氟离子全部进入晶格形成大颗粒(NH40.3TiO1.1F2.1。因其具有不适宜光催化反应的能带结构,该物质表现出了较差的光催化活性,但其可作为制备氮、氟掺杂钛基半导体材料的前驱体使用。

关键词: 氢氟酸钛基半导体结构演变光催化光电性能    
Abstract:

Herein, the synthesis of a series of titanium based nanocrystals using tetrabutyl titanate (TBT) as the titanium source and hydrofluoric acid (HF) as the fluorine source under solvothermal conditions has been described. The effect of the amount of HF on the structural evolution of the nanocrystals was studied. The catalytic performance of the as-prepared samples was measured by photocatalytic hydrogen evolution, photocatalytic RhB degradation, and chronoamperometric tests. The obtained results showed that anatase TiO2 nanoparticles with exposed {101} facets were synthesized in the absence of HF. After the addition of a small amount of HF, the F- ion adsorbed on the surface of the nanocrystal and decreased the surface energy of the {001} facets. Thus, sheet-shaped TiO2 was formed with exposed {001} facets. Furthermore, the as-prepared sample showed an enhanced photocatalytic performance because of the increased charge separation efficiency, which was dependent on the surface heterostructure generated between the {101} and {001} facets. On further increasing the amount of HF, F- ions started to enter the lattice and formed a new crystal phase. The as-prepared sheet-stacked sample was comprised of TiO2 and TiOF2 phases in both surface and bulk regions, which showed the decreased photocatalytic activity. With the addition of more HF, the F- ion moved completely into the crystal lattice and the large particle structure of (NH4)0.3TiO1.1F2.1 was formed. Although the as-prepared (NH4)0.3TiO1.1F2.1 displayed a low photocatalytic activity because of an improper band gap structure, it could be used as a precursor for the synthesis of N, F doped titanium based semiconductors.

Key words: Hydrofluoric acid    Titanium based semiconductor    Structure evolution    Photocatalysis    Photoelectrochemical performance
收稿日期: 2017-04-25 出版日期: 2017-05-12
中图分类号:  O643  
基金资助:

国家自然科学基金(21476159)与天津市自然科学基金(15JCZDJC37400,15JCYBJC23000)资助项目

通讯作者: 李新刚     E-mail: xingang_li@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张昊
李新刚
蔡金孟
王亚婷
武墨青
丁彤
孟明
田野

引用本文:

张昊, 李新刚, 蔡金孟, 王亚婷, 武墨青, 丁彤, 孟明, 田野. 氢氟酸加入量对钛基半导体结构演变及光催化性能的影响[J]. 物理化学学报, 2017, 33(10): 2072-2081.

ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705127        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2072

(1) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
(2) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/B800489G
(3) Cai, J.; Zhu, Y.; Liu, D.; Meng, M.; Hu, Z.; Jiang, Z. ACS Catal. 2015, 5, 1708. doi: 10.1021/acscatal.5b00055
(4) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448
(5) Ruzimuradov, O.; Hojamberdiev, M.; Fasel, C.; Riedel, R. J. Alloy. Compd. 2017, 699, 144. doi: 10.1016/j.jallcom.2016.12.355
(6) Wang, Y. J.; Sun, J. Y.; Feng, R. J; Zhang, J. Acta Phys. -Chim. Sin. 2016, 32, 728. [王彦娟, 孙佳瑶, 封瑞江, 张健. 物理化学学报, 2016, 32, 728.] doi: 10.3866/PKU.WHXB201511303
(7) Roy, N.; Sohn, Y.; Pradhan, D. ACS Nano 2013, 7, 2532. doi: 10.1021/nn305877v
(8) Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M. Angew. Chem., Int. Ed. 2011, 50, 2133. doi: 10.1002/anie.201006057
(9) Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; Fan, F.; Li, R.; Li, C. Energy Environ. Sci. 2016, 9, 2463. doi: 10.1039/C6EE00526H
(10) Zhao, Z. Y.; Tian, F. Acta Phys. -Chim. Sin. 2016, 32, 2511. [赵宗彦, 田凡. 物理化学学报 2016, 32, 2511.]doi: 10.3866/PKU.WHXB201607131
(11) Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. Adv. Funct. Mater. 2012, 22, 166. doi: 10.1002/adfm.201101927
(12) Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 9280. doi: 10.1021/ja504802q
(13) Yu, K.; Zhang, C.; Chang, Y.; Feng, Y.; Yang, Z.; Yang, T.; Lou, L.L.; Liu, S. Appl. Catal. B 2017, 200, 514. doi: 10.1016/j.apcatb.2016.07.049
(14) Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Nanoscale 2014, 6, 1946. doi: 10.1039/C3NR04655A
(15) Yu, Y.; Wu, H. H.; Zhu, B. L.; Wang, S. R.; Huang, W. P.; Wu, S. H.; Zhang, S. M. Catal. Lett. 2008, 121, 165. doi: 10.1007/s10562-007-9316-1
(16) Kang, H. W.; Park, S. B. Int. J. Hydrogen Energy 2016, 41, 13970. doi: 10.1016/j.ijhydene.2016.06.213
(17) Yu, J. C.; Yu, J. G.; Ho, W.; Jiang, Z.; Zhang, L. Chem. Mater. 2002, 14, 3808. doi: 10.1021/cm020027c
(18) Nishimura, T.; Ikeda, A.; Namba, H.; Morishita, T.; Kido, Y. Surf. Sci. 1999, 421, 273. doi: 10.1016/S0039-6028(98)00840-1
(19) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
(20) Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131, 3152. doi: 10.1021/ja8092373
(21) Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. J. Am. Chem. Soc. 2014, 136, 8839. doi: 10.1021/ja5044787
(22) Wang, W.; Zhu, D.; Luo, J.; Zhu, J.; Liu, X. J. Nanopart. Res. 2016, 18, 152. doi: 10.1007/s11051-016-3433-y
(23) Guo, M.; Lu, J. Q.; Wu, Y. N.; Wang, Y. J.; Luo, M. F. Langmuir 2011, 27, 3872. doi: 10.1021/la200292f
(24) Li, C.; Li, M. J. J. Raman Spectrosc. 2002, 33, 301. doi: 10.1002/jrs.863
(25) Zhang, J.; Li, M. J.; Feng, Z. C.; Chen, J.; Li, C. J. Phys. Chem. B 2006, 110, 927. doi: 10.1021/jp0552473
(26) Wang, Y. T.; Cai, J. M.; Wu, M. Q.; Zhang, H.; Meng, M.; Tian, Y.; Ding, T.; Gong, J. L.; Jiang, Z.; Li, X. G. ACS Appl. Mater. Interfaces 2016, 8, 23006. doi: 10.1021/acsami.6b05777
(27) Wen, C. Z.; Hu, Q. H.; Guo, Y. N.; Gong, X. Q.; Qiao, S. Z.; Yang, H. G. Chem. Commun. 2011, 47, 6138. doi: 10.1039/C1CC10851D
(28) Tian, F.; Zhang, Y. P.; Zhang, J.; Pan, C. X. J. Phys. Chem. C 2012, 116, 7515. doi: 10.1021/jp301256h
(29) Cai, J.; Wang, Y.; Zhu, Y.; Wu, M.; Zhang, H.; Li, X.; Jiang, Z.; Meng, M. ACS Appl. Mater. Interfaces 2015, 7, 24987. doi: 10.1021/acsami.5b07318
(30) Hu, W. Y.; Zhou, W.; Zhang, K. F.; Zhang, X. C.; Wang, L.; Jiang, B. J.; Tian, G. H.; Zhao, D. Y.; Fu, H. G. J. Mater. Chem. A 2016, 4, 7495. doi: 10.1039/c6ta01928e
(31) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 3026. doi: 10.1021/nl201766h
(32) Yin, W. J.; Bai, L. J.; Zhu, Y. Z.; Zhong, S. X.; Zhao, L. H.; Li, Z. Q.; Bai, S. ACS Appl. Mater. Interfaces 2016, 8, 23133. doi: 10.1021/acsami.6b07754
(33) Zhao, X.; Wei, G.; Liu, J.; Wang, Z.; An, C.; Zhang, J. Mater. Res. Bull. 2016, 80, 337. doi: 10.1016/j.materresbull.2016.04.018
(34) Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Chem. Soc. Rev. 2014, 43, 5234. doi: 10.1039/c4cs00126e
(35) Hojamberdiev, M.; Zhu, G.; Sujaridworakun, P.; Jinawath, S.; Liu, P.; Zhou, J. P. Powder Technol. 2012, 218, 140. doi: 10.1016/j.powtec.2011.12.004

[1] 卢秀利,韩莹莹,鲁统部. 石墨炔结构表征及在光电催化反应中的应用[J]. 物理化学学报, 2018, 34(9): 1014-1028.
[2] 李少海,翁波,卢康强,徐艺军. 聚胺界面修饰改善碳量子点可见光光敏化性能[J]. 物理化学学报, 2018, 34(6): 708-718.
[3] 杜新华,李阳,殷辉,向全军. Au/TiO2/MoS2等离子体复合光催化剂的制备及其增强光催化产氢活性[J]. 物理化学学报, 2018, 34(4): 414-423.
[4] 周亮,张雪华,林琳,李盼,邵坤娟,李春忠,贺涛. 无模板法水热合成CoTe及其可见光光催化还原CO2性能[J]. 物理化学学报, 2017, 33(9): 1884-1890.
[5] 宋春冬,张静,高莹,卢圆圆,王芳芳. 基于单质法合成直接Z型CuS-WO3及光催化性能[J]. 物理化学学报, 2017, 33(9): 1891-1897.
[6] 程若霖,金锡雄,樊向前,王敏,田建建,张玲霞,施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[7] 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492-1498.
[8] 李蛟,陈忠. Ag3XO4(X = P,As,V)电子结构及光催化性质的第一性原理计算[J]. 物理化学学报, 2017, 33(5): 941-948.
[9] 阮毛毛,宋乐新,王青山,夏娟,杨尊,滕越,许哲远. 纳米片自组装的(BiO)2CO3单分散微米绒球的绿色可控合成及其光催化性能[J]. 物理化学学报, 2017, 33(5): 1033-1042.
[10] 胡海龙,王晟,侯美顺,刘福生,王田珍,李天龙,董乾乾,张鑫. 水热法制备p-CoFe2O4/n-CdS及其光催化制氢性能[J]. 物理化学学报, 2017, 33(3): 590-601.
[11] 白金,陈鑫,奚兆毅,王翔,李强,胡绍争. 溶剂热后处理对石墨相氮化碳光化学固氮产氨性能的影响[J]. 物理化学学报, 2017, 33(3): 611-619.
[12] 肖明,黄在银,汤焕丰,陆桑婷,刘超. Ag3PO4表面热力学性质及光催化原位过程热动力学的晶面效应[J]. 物理化学学报, 2017, 33(2): 399-406.
[13] 荆涛,戴瑛. 固溶体光催化材料的研究进展[J]. 物理化学学报, 2017, 33(2): 295-304.
[14] 张云龙,章俞之,宋力昕,郭云峰,吴岭南,张涛. 砚状ZnO/石墨烯复合物的制备及其光催化性能[J]. 物理化学学报, 2017, 33(11): 2284-2292.
[15] 黄雅钰,方秋艳,周剑章,詹东平,时康,田中群. 光诱导约束刻蚀体系中的TiO2纳米管阵列光电极上Cu的沉积及抑制[J]. 物理化学学报, 2017, 33(10): 2042-2051.