Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 1989-1997    DOI: 10.3866/PKU.WHXB201705175
综述     
2, 4-二硫代尿嘧啶的紫外吸收光谱和共振拉曼光谱
金颖淳,郑旭明*()
UV Absorption and Resonance Raman Spectra of 2, 4-Dithiouracil
Ying-Chun JIN,Xu-Ming ZHENG*()
 全文: PDF(2107 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

硫代嘧啶碱基是光动力疗法潜在的重要光敏剂,其最低单重激发态的光物理研究已有广泛报道。然而,其较高激发态的跃迁性质和反应动力学研究较为稀少。因此,本文采用共振拉曼光谱和密度泛函理论计算方法研究2,4-二硫代尿嘧啶的紫外光谱和几个较高单重激发态的短时结构动力学。首先,基于共振拉曼光谱强度与电子吸收带振子强度f的关系,将紫外光谱去卷积成四个吸收带,分别为358 nm(f=0.0336)中等强度吸收带(A带),338 nm(f=0.1491)、301 nm(f=0.1795)和278 nm(f=0.3532)强而宽的吸收带(B、CD带)。这一结果既吻合密度泛函理论计算结果,又符合共振拉曼光谱强度模式对紫外光谱带的预期。据此,去卷积得到的四个吸收带被分别指认为S0S2跃迁、S0S6跃迁、S0S7跃迁和S0S8跃迁。同时,分别对B,CD带共振拉曼光谱进行了详细的指认,获得了短时动力学信息。结果表明,S8态短时动力学的显著特征是在Franck-Condon区域或附近发生了S8ππ*)/S*)势能面交叉引发的、伴随超快结构扭转的非绝热过程。S7和S6态短时动力学的主要特征是反应坐标的多维性,它们分别沿C5C6/C2S8/C4S10/N2C3+C4N3H9/N1C2N3/C2N1C6/C6N1H7/C5C6H12和C5C6/N3C2/C4S10/C2S8+C6N1H7/C5C6H12/C5C6N1/C5C6H12/C2N1C6/N1C2N3/C4N3H9/N1C2N3等内坐标演化。

关键词: 2, 4-二硫代尿嘧啶激发态结构动力学紫外吸收光谱共振拉曼光谱密度泛函理论    
Abstract:

2, 4-Dithiouracil is potentially an important photosensitizer for use in photodynamic therapy. Its photophysics when populated in the lowest excited state has been studied extensively. However, its higher light absorbing excited states and the corresponding reaction dynamics have not been investigated sufficiently. Herein, the resonance Raman spectroscopy and density functional theory were adopted to clarify the electronic transitions associated with the UV absorptions in the far-UV region and the short-time structural dynamics corresponding to the higher light absorbing excited states. The UV absorption spectrum in acetonitrile was deconvoluted into four bands:the moderate intense absorption band at 358 nm (f=0.0336) (A band), the intense broad absorption bands at 338 nm (f=0.1491), 301 nm (f=0.1795), and 278 nm (f=0.3532) (B, C, and D bands) respectively, on the basis of the relationship between the resonance Raman intensities and the oscillator strength f. The result was consistent with the predictions made using the time-dependent density functional theory calculations and the resonance Raman intensity patterns. Thus, the four bands resulted from the deconvolution are assigned as the S0S2, S0S6, S0S7 and S0S8 transitions, respectively. The resonance Raman spectra of the corresponding B, C, and D bands are assigned and the qualitative short-time structural dynamics are obtained. The major character in the short-time structural dynamics of 2, 4-dithiouracil in the S8 excited state is that a non-adiabatic process via S8(ππ*)/S(*) curve-crossing, accompanied with ultrafast structural distortion, takes place in or near the Franck-Condon region, while the major character in the short-time structural dynamics in the S7 and S6 excited state appears in the multidimensional reaction coordinates, which are mostly along the C5C6/C2S8/C4S10/N2C3 bond lengths + C4N3H9/N1C2N3/C2N1C6/C6N1H7/C5C6H12 bond angles for the S7 excited state and the C5C6/N3C2/C4S10/C2S8 bond lengths + C6N1H7/C5C6H12/C5C6N1/C5C6H12/C2N1C6/N1C2N3/C4N3H9/N1C2N3 bond angles for the S6 excited state.

Key words: 2, 4-Dithiouracil    Excited state structural dynamics    UV absorption spectrum    Resonance Raman spectrum    Density functional calculation
收稿日期: 2017-04-11 出版日期: 2017-05-17
中图分类号:  O641  
基金资助: 国家自然科学基金(21473163);国家重点基础研究发展规划项目(973)(2013CB834607)
通讯作者: 郑旭明     E-mail: zxm@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金颖淳
郑旭明

引用本文:

金颖淳,郑旭明. 2, 4-二硫代尿嘧啶的紫外吸收光谱和共振拉曼光谱[J]. 物理化学学报, 2017, 33(10): 1989-1997.

Ying-Chun JIN,Xu-Ming ZHENG. UV Absorption and Resonance Raman Spectra of 2, 4-Dithiouracil. Acta Phys. -Chim. Sin., 2017, 33(10): 1989-1997.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705175        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/1989

图1  (a) 24DTU在乙腈、甲醇和水中的紫外吸收光谱;(b)在PCM溶剂模型下由B3LYP/6-31+G(d)计算获得的24DTU的几何结构示意图
State(Cs) Orbital Transition Transition Energy(△E)/nm (eV)f
Calc. Expt.a Calc. Expt.a
S1(A") nHπL*(0.68) + nH-2πL*(-0.16) 415(2.98)0.0000
S2(A') πH-1πL*(0.61) + πH-3πL*(-0.32) + πH-1πL+1*(0.10) 343(3.61) (358) 0.0541 0.0336
S3(A") πH-2πL*(0.54)+nHπL+1*(0.33)+πH-2πL+1*(0.25) + nHπL*(0.16) 340(3.64) 0.0001
S4(A") nHπL+1 * (0.42) + πH-2πL+1*(-0.41) + πH-2πL*(0.37)333(3.72) 0.0005
S5(A") πH-2πL+1* (0.54) + nHπL+1*(-0.44) 307(4.03) 0.0005
S6(A') πH-3πL*(0.51) + πH-3πL+1*(0.40) +πH-1πL+1*(0.18)+ πH-1πL*(0.18) 305(4.05) (338) 0.1789 0.1491
S7(A') πH-1πL+1*(0.42)+πH-3πL+1*(0.35) + πH-3πL*(-0.32)+ πH-1πL*(-0.28) 282(4.54) (301) 0.3181 0.1795
S8(A') πH-3πL+1*(0.57) + πH-1πL+1* (-0.37) 265(4.66) (278) 0.4187 0.3532
H-5nπH-4πH-3πH-2πH-1nHπL*πL+1*
表1  在PCM溶剂模型下由B3LYP-TD/6-311++G(3df, 3pd)计算获得的24DTU的电子跃迁能(△E)、跃迁轨道和振子强度(f)
图2  24DTU在乙腈溶液中的紫外吸收光谱的去卷积曲线(点线)
图3  24DTU的傅里叶变换红外和拉曼光谱以及B3LYP/6-31+G(d)计算拉曼光谱
Mode Computed/cm-1 Exp/cm-1 descriptions Assignment (PED/%)
a b FT-RamanFT-IR R.R.c
A'ν13633(89.04)3623N1H7 stretchνN1H7 (100)
ν23585(32.96)3576N3H9 strechνN3H9(100)
ν33267(93.21)3258C5H11 stretchνC5H11(96)
ν43230(129.55)3221C6H12 stretchνC6H12(96)
ν51658(134.44)16511604(m)16101618C5C6 stretch +
C5C6H12 in plane bend
νC5C6(63) +
δC5C6H12(10)
ν61573(3.90)15661549(w)15731546C4N3H9/C4N3H9in plane bend+
N1C2 strech
δC8N1H7(35) + δC4N3H9(24) +
νN1C2(10)
ν71497(32.77)14901491(w)14871478C5C6H12/C6C3H11/C4N3H9 in plane bend+
N1C6 strech
δC4N3H9(26) + δC5C6H12(18) +
δC6N3H11(15) + νN1C6(11)
ν81397(20.28)13911425(w)14121376C6N1H7/C4N3H9/C5C6H12 in
plane bend
δC6N1H7(15) + δC6N3H9(23) +
δC5C6H12(15)
ν91368(24.17)13621367(m)1359N1C2/N3C2 stretchνN1C2(35) + νN3C2(17)
ν101265(66.13)12591253(vs)1252N3C4/N3C2 stretch +
C6C3H11 in plane bend
νN3C4(33) + δC6C5H11(18) + νN3C2(11)
ν111241(29.72)12351228(vw)12321225N3C2/C4S10/C2S8 stretch +
C5C6H12/C6N1H7 in plane bend
νN3C2(18) + νC4S10(18) + νC2S8(15) + δC5C6H12(11) + δC6N1H7(10)
ν121217(18.23)12111188(s)12111205C5C6H12/C6C3H11 in plane bend +
N3C4 /N1C6 stretch
δC5C6H12(26) + δC6N3H11(14) +
νN3C4(13) + νN1C6(13)
ν131128(18.35)11221118(w)11341122N1C2N3/C4N3H9 in plane bend +
C4S10/C2S8 stretch
δN1C2N3(20) + νC4S10(15) +
δC4N3H9(13) + νC2S8(15)
ν141086(15.33)10801077(w)10741069C6C3H11 in plane bend +
N1C6/C5C6 stretch
δC6N3H11(28) + νN1C6(25) +

νC5C6(10)
ν15986(2.92)980983(w)984982C5C6N1/C5C6H12/C2N1C6/N1C2N3 in
plane bend + N1C6 stretch
δC5C6N1(35) + δC5C6H12(14) + δC2N1C6(13) +
δN1C2N3(11) + νN1C6(10)
ν16878(1.25)872860C2N1C6 in plane bend +
C2S8/C4S10 stretch
δC2N1C6(25) + νC2S8(21) +
νC4S10(19)
ν17693(24.32)688683(s)680684C2N1C6/N1C2N3/C2N3C4 in plane bend +
N1C2 stretch
δC2N1C6(27) + νN1C2(20) +
δN1C2N3(10) + δC2N3C4(13)
ν18463(10.63)458460(w)467493C2S8 stretch +
N1C2N3 in plane bend
νC2S8(34) + δN1C2N3(29)
ν19445(20.36)440443(m)447463C2N3C4in plane bend +
C4S10/N3C2 stretch
δC2N3C4(35) + νC4S10(28) +
νN3C2(16)
ν20388(2.21)383387(w)N3C2S8/C5C4H10 in plane bendδN3C2S8(45) + δC5C4H10(45)
ν21215(7.84)210229(w)C5C4H10/N3C2S8 in plane bendδC5C4H10(39) + δN3C2S8(37)
A"ν22963(3.55)957964(vw)C4C5C6H12/N1C6C5H11/C2N1C6C5 TorsionτC4C5C6H12(55) + τN1C6C5H11(26) +
τC2N1C6C5(14)
ν23799(0.15)793N1C6C5H11/C4C5C6H12 TorsionτN1C6C5H11(61)+τC4C5C6H12(29)
ν24740(0.81)734C5C4N3H9 Ring deformationτC5C4N3H9(92)
ν25680(0.65)675N3C4C5S10 Out of plane bend +
C5C6N1H7/C2N1C6C5/N1C2N3C4 Torsion
γC4C5N3S10(27) + τC5C6N1H7(18)+
τC2N1C6C5(13) + τN1C2N3C4(13)
ν26621(1.60)616C5C2N3S8 Out of plane bend + C5C6N1H7 TorsionγC5C2N3S8(51) + τC5C6N1H7(41)
ν27592(3.65)587611(vw)C5C6N1H7 Torsion +
N3C4C5S10/N5C2N3S8 Out of plane bend
τC5C6N1H7(37) + γN3C4C5S10(28) +
γC5C2N3S8(21)
ν28390(0.62)385386C2N1C6C5/C4C5C6H12 Torsion +
N3C4C5S10 Out of plane bend
τC2N1C6C5(46) + γN3C4C5S10(22) +
τC4C5C6H12(13)
ν29148(0.06)143C6N1C2N3/ C2N1C6C5/N1C2N3C4 TorsionτC6N1C2N3(55) + τC2N1C6C5(21)+
τN1C2N3C4(15)
ν30127(0.01)122N1C2N3C4/C6N1C2N3 Torsion +
N3C4C5S10 Out of plane bend
τN1C2N3C4(65) + τC6N1C2N3(14) +
γC4C5N3S10(10)
表2  24DTU在B3LYP/6-31+G(d)计算水平下的计算频率和实验观察到的傅里叶变换红外和拉曼光谱的振动频率和指认
图4  2.4-二硫代尿嘧啶在乙腈(a)、甲醇(b)和水(c)溶剂中的不同激发波长下的共振拉曼光谱
图5  24DTU在乙腈溶剂中的266.0 nm (上)、319.9 nm (中)和341.5 nm (下)共振拉曼光谱
1 Crespo-Hernández C. E. ; Cohen B. ; Hare P. M. ; Kohler B. Chem. Rev 2004, 104 (4), 1977.
doi: 10.1021/cr0206770
2 Crespo-Hernández C. E. ; Cohen B. ; Kohler B. Nature 2005, 436 (7054), 1141.
doi: 10.1038/nature03933
3 Middleton C. T. ; De La Harpe K. ; Su C. ; Law Y. K. ; Crespo-Hernández C. E. B ; Kohler B. Ann. Rev. Phys. Chem 2009, 60, 217.
doi: 10.1146/annurev.physchem.59.032607.093719
4 Buchvarov I. ; Wang Q. ; Raytchev M. ; Trifonov A. ; Fiebig T Proc. Nat. Acad. Sci 2007, 104 (12), 4794.
doi: 10.1073/pnas.0606757104
5 Markovitsi D. ; Onidas D. ; Gustavsson T. ; Talbot F. ; Lazzarotto E. J.Am. Chem. Soc. 2005, 127 (49), 17130.
doi: 10.1021/ja054955z
6 Kuramochi H. ; Kobayashi T. ; Suzuki T. ; Ichimura T. J.Phys. Chem. A 2010, 114 (26), 8782- 8789.
doi: 10.1021/jp102067t
7 Pollum M. ; Crespo-Hernández C. E. J.Phys. Chem. 2014, 140, 07110.
doi: 10.1063/1.4866447
8 Pollum M. ; Jockusch S. ; Crespo-Hernández C. E. J.Am. Chem. Soc. 2014, 136 (52), 17930.
doi: 10.1021/ja510611j
9 Taras-Go?lińska K. ; Burdziński G. ; Wenska G. J.Photochem. Photobiol. A 2014, 275, 89.
doi: 10.1016/j.jphotochem.2013.11.003
10 Harada Y. ; Suzuki T. ; Ichimura T. ; Xu Y. J.Phys. Chem. B 2007, 111 (19), 5518.
doi: 10.1021/jp0678094
11 Harada Y. ; Okabe C. ; Kobayashi T. ; Suzuki T. ; Ichimura T. ; Nishi N. ; Xu Y. Z. J.Phys. Chem. Lett. 2009, 1 (2), 480.
doi: 10.1021/jz900276x
12 Reichardt C. ; Crespo-Hernández C. E. J.Phys. Chem. Lett. 2010, 1 (15), 2239.
doi: 10.1021/jz100729w
13 Reichardt C. ; Crespo-Hernández C. E Chem. Commun 2010, 46 (32), 5963.
doi: 10.1039/C0CC01181A
14 Zhang Y. ; Zhu X. ; Smith J. ; Haygood M. ; Gao R. J.Phys. Chem. B 2011, 115 (8), 1889.
doi: 10.1021/jp109590t
15 Reichardt C. ; Guo C. ; Crespo-Hernández C. E J.Phys. Chem. B 2011, 115 (12), 3263- 3270.
doi: 10.1021/jp112018u
16 Martínez-Fernández L. ; González L. ; Corral I. Chem. Commun. 2012, 48 (15), 2134.
doi: 10.1039/C2CC15775F
17 Cui G. ; Fang W. J.Chem. Phys. 2013, 138 (4), 044315.
doi: 10.1063/1.4776261
18 Pollum, M,; Martínez-Fernández, L.; Crespo-Hernández, C. E. Photoinduced Phenomena in Nucleic Acid I; Springer: NY, US, 1970; p 33. doi: 10.1007/128_2014_554
19 Gobbo J. P. ; Borin A. C. ; Serrano-Andrés L. J. Phys. Chem. B 2011, 115 (19), 6243.
doi: 10.1021/jp200297z
20 Kobayashi T. ; Kuramochi H. ; Harada Y. ; Suzuki T. Ichimura T. J.Phys. Chem. A 2009, 113 (44), 12088.
doi: 10.1021/jp905433s
21 Kobayashi T. ; Harada Y. ; Suzuki T. ; Ichimura T. J. Phys. Chem. A 2008, 112 (51), 13308.
doi: 10.1021/jp803096j
22 Jiang J. ; Zhang T. S. ; Xue J. D. ; Zheng X. M. J.Chem. Phys. 2015, 143 (17), 11B605_1.
doi: 10.1063/1.4935047
23 Xie B. B. ; Wang Q. ; Guo W. W. ; Cui G. L. Phys. Chem. Chem. Phys. 2017, 19 (11), 7689.
doi: 10.1039/C7CP00478H
24 Li M. J. ; Liu M. X. ; Zheng X. J. Acta Phys.-Chim. Sin. 2013, 29 (5), 903.
doi: 10.3866/PKU.WHXB201302272
李明娟; 刘明霞; 郑旭明. 物理化学学报, 2013, 29 (5), 903.
doi: 10.3866/PKU.WHXB201302272
25 Frisch M. J. ; Treucks G. W. ; Schlegel H.B. ; et al Gauss 09 Gaussian Inc.: Wallingford, CT, 2009.
26 Jamróz M. H. Spectrochim. Acta A 2013, 114, 220.
doi: 10.1016/j.saa.2013.05.096
27 Dennington, R.; Keith, T.; Millam, J. GaussView, version 5.Semichem Inc.: Shawnee Mission, KS, 2009.
28 Galica G. E. ; Johnson B. R. ; Kinsey J. L. ; Hale M. O. J.Phys. Chem. 1991, 95, 7994.
doi: 10.1021/j100174a003
29 Phillips D. L. ; Myers A. B. J.Chem. Phys. 1991, 95, 226.
doi: 10.1063/1.461479
30 Biswas N. ; Umapathy S. J.Phys. 1997, 48 (4), 937.
doi: 10.1007/BF02845597
31 Tang J. ; Albrecht A. C. J.Chem. Phys. 1968, 49 (3), 1144.
doi: 10.1063/1.1670202
32 Tang J ; Albrecht A. C. Raman Spectrosc 1970, 33
doi: 10.1007/978-1-4684-3027-1_2
33 Li M. J. ; Liu M. X. ; Zhao Y. Y. ; Pei K. M. ; Wang H. G. J.Phys Chem. B 2013, 117 (39), 11660.
doi: 10.1021/jp403798d
34 Fang W. X. ; Zheng X. M. ; Wang H. G. ; Zhao Y. Y. ; Guang X.G. ; Phillips D. L. ; Chen X. B. ; Fang W. H. J.Phys. Chem. 2008, 133, 134507.
doi: 10.1021/jp510396y
35 Yang Y. ; Pan S. ; Xue J. D. ; Zheng X. D. ; Phillips D. L. ; Fang W.H. J.Raman Spectrosc. 2014, 45 (1), 105.
doi: 10.1002/jrs.4420
36 Liu M X. ; Xie B. B. ; Li M. J. ; Zhao Y. Y. ; Pei K. M. ; Wang H. G. ; Zheng X. M. J.Raman Spectrosc. 2013, 44 (3), 440.
doi: 10.1002/jrs.4213
[1] 许文武,高嶷. 巯基保护的中空金纳米球[J]. 物理化学学报, 2018, 34(7): 770-775.
[2] 卢天,陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.
[3] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[4] 尹凡华,谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256-262.
[5] 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[6] 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[7] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[8] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[9] 刘玉玉,李杰伟,薄一凡,杨磊,张效霏,解令海,仪明东,黄维. 芴基张力半导体结构和光电性质的理论研究[J]. 物理化学学报, 2017, 33(9): 1803-1810.
[10] 徐位云,汪丽莉,宓一鸣,赵新新. Fe原子吸附对单层WS2结构和性质的影响[J]. 物理化学学报, 2017, 33(9): 1765-1772.
[11] 韩波,程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[12] 郭姿含,胡竹斌,孙真荣,孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.
[13] 韩磊,彭丽,蔡凌云,郑旭明,张富山. 液态聚乙二醇CH2剪切振动和扭转振动——拉曼光谱和密度泛函理论计算[J]. 物理化学学报, 2017, 33(5): 1043-1050.
[14] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[15] 朱倩,曹朝暾,曹晨忠. 间位基团激发态取代基常数的扩展及应用[J]. 物理化学学报, 2017, 33(4): 729-735.