Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2035-2041    DOI: 10.3866/PKU.WHXB201705182
论文     
聚苯胺-还原氧化石墨烯复合材料的比电容及超级电容性能
曾向东,赵晓昱*(),韦会鸽,王彦飞,唐娜,沙作良
Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite
Xiang-Dong ZENG,Xiao-Yu ZHAO*(),Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA
 全文: PDF(1784 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

通过同步还原聚苯胺(PANI)-氧化石墨烯(GO)复合物制备得到了聚苯胺-还原氧化石墨烯(PANI-rGO)。由于复合材料中PANI提供了氧化还原反应的电荷,使得PANI-rGO复合材料具有较大的比电容。通过扫描电子显微镜(SEM),紫外-可见光谱和热重量分析法(TGA)对复合物进行了结构和形态的分析。复合材料的形态呈薄片状,聚苯胺是均匀地包裹在氧化石墨烯上的。当电流密度为20 A·g-1时,PANI-rGO复合材料的比电容可高达1069 F·g-1(1.71 F·cm-2),是PANI-GO复合材料的五倍,这是因为复合材料中还原氧化化石墨烯的大比表面和高电导性所引起的。

关键词: 聚苯胺-还原氧化石墨烯聚苯胺-氧化石墨烯比电容操作电压    
Abstract:

Flaky polyaniline-reduced graphene oxide (PANI-rGO) composites have larger specific capacitance due to the improved redox charge of PANI in the composites, fabricated by simultaneous reduction of PANI-GO. The structural and morphological analyses were carried out using scanning electron microscopy, UV-Vis spectroscopy, and thermogravimetry. The results showed that the composites are flaky in shape. PANI is uniformly coated on GO, and PANI-rGO has specific capacitance as high as 1069 F·g-1 (1.71 F·cm-2) at a current density of 20 A·g-1, 5 times higher than PANI-GO; this is caused by the large surface and conductivity of the rGO in the composite.

Key words: Polyaniline-reduced graphene oxide    Polyaniline-graphene oxide    Specific capacitance    Operating voltage
收稿日期: 2017-02-09 出版日期: 2017-05-18
中图分类号:  O646  
基金资助: 国家自然科学基金(21503146)
通讯作者: 赵晓昱     E-mail: xyz@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾向东
赵晓昱
韦会鸽
王彦飞
唐娜
沙作良

引用本文:

曾向东,赵晓昱,韦会鸽,王彦飞,唐娜,沙作良. 聚苯胺-还原氧化石墨烯复合材料的比电容及超级电容性能[J]. 物理化学学报, 2017, 33(10): 2035-2041, 10.3866/PKU.WHXB201705182

Xiang-Dong ZENG,Xiao-Yu ZHAO,Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite. Acta Phys. -Chim. Sin., 2017, 33(10): 2035-2041, 10.3866/PKU.WHXB201705182.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705182        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2035

Fig 1  UV-Vis spectra of (a) PANI-rGO, (b) PANI-GO, (c) PANI, (d) GO and (e) rGO obtained in 1 mol·L-1 aqueous acid dispersions.
Fig 2  TGA curves of (a) GO, (b) PANI-GO, (c) PANI-rGO, (d) PANI and (e) rGO.
Fig 3  SEM images of (A) PANI-rGO, (B) PANI-GO and (C) PANI; (D) AFM image of the cross section of PANI-rGO film.
Fig 4  Cyclic voltammograms of (a) PANI, (b) rGO, (c) PANI-rGO and (d) PANI-GO casted on electrode as working electrode for v = 10 mV·s-1. The current values were specific current per unit of mass.
Fig 5  Cyclic voltammograms of PANI-rGO casted on electrode as working electrode for 20 scans at v = 10 mV·s-1.
Fig 6  CV curve of GO and rGO casted on electrode compared with the bare electrode in 1 mol·L-1 HCl.
Fig 7  Charge-discharge cycling curves of PANI-GO and PANI-rGO electrodes at a current density of 20 A·g-1.
Fig 8  Specific capacitance measured at different charging current, based on their total mass of composites on electrode. Inset is the cyclic performance of the electrode at the scan rate 100 mV·s-1.
Fig 9  (a) Nyquist plots of PANI-rGO and PANI-GO, with DC potential under 0 V vs Ag/AgCl; Inset shows magnified view at high frequency range. (b) Equivalent circuit model for the EIS analysis.
1 Geim A. K. ; Novoselov K. S. Nature Mater. 2007, 6, 183.
doi: 10.1038/Nmat1849
2 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896
3 Ghosh D. ; Giri S. ; Dhibar S. ; Das C. K. Electrochim. Acta 2014, 147, 557.
doi: 10.1016/j.electacta.2014.09.130
4 Mishra A. K. ; Ramaprabhu S. J.Phys. Chem. C 2011, 115, 14006.
doi: 10.1021/jp201673e
5 Yan J. ; Wei T. ; Shao B. ; Fan Z. J. ; Qian W. Z. ; Zhang M. L. ; Wei F. Carbon 2010, 48, 487.
doi: 10.1016/j.carbon.2009.09.066
6 Hao Q. ; Xia X. ; Lei W. ; Wang W. ; Qiu J. Carbon 2015, 81, 552.
doi: 10.1016/j.carbon.2014.09.090
7 Wang H. ; Hao Q. ; Yang X. ; Lu L. ; Wang X. Nanoscale 2010, 2, 2164.
doi: 10.1039/c0nr00224k
8 Conway B. E. ; Pell W. G. J.Solid State Electrochem. 2003, 7, 637.
doi: 10.1007/s10008-003-0395-7
9 Rauda I. E. ; Augustyn V. ; Dunn B. ; Tolbert S. H. Acc. Chem.Res. 2013, 46, 1113.
doi: 10.1021/ar300167h
10 Wang Z. L. ; He X. J. ; Ye S. H. ; Tong Y. X. ; Li G. R. ACSAppl. Mater. Interfaces 2014, 6, 642.
doi: 10.1021/am404751k
11 Lu X. F. ; Chen X. Y. ; Zhou W. ; Tong Y. X. ; Li G. R. ACSAppl. Mater. Interfaces 2015, 7, 14843.
doi: 10.1021/acsami.5b03126
12 Simon P. ; Gogotsi Y. ; Dunn B. Science 2014, 343, 1210.
doi: 10.1126/science.1249625
13 Augustyn V. ; Simon P. ; Dunn B. Energy Environ. Sci. 2014, 7, 1597.
doi: 10.1039/C3EE44164D
14 Wu Q. ; Xu Y. ; Yao Z. ; Liu A. ; Shi G. ACS Nano 2010, 4, 1963.
doi: 10.1021/nn1000035
15 Tan Y. T. ; Ran F. ; Kong L. B. ; Liu J. ; Kang L. Synth. Met. 2012, 162, 114.
doi: 10.1016/j.synthmet.2011.11.020
16 Wang H. Z. ; Gao C. X. ; Zhang P. ; Yao S. W. ; Zhang W. G. Acta Phys. -Chim. Sin. 2013, 29, 117.
doi: 10.3866/PKU.WHXB201210234
王宏智; 高翠侠; 张鹏; 姚素薇; 张卫国. 物理化学学报, 2013, 29, 117.
doi: 10.3866/PKU.WHXB201210234
17 Wang L. L. ; Xing R. G. ; Zhang B. W. ; Hou Y. ActaPhys. -Chim. Sin. 2014, 30, 1659.
doi: 10.3866/PKU.WHXB201406162
汪丽丽; 邢瑞光; 张邦文; 侯渊. 物理化学学报, 2014, 30, 1659.
doi: 10.3866/PKU.WHXB201406162
18 Orata D. ; Buttry D. A. J.Am. Chem. Soc. 1987, 109, 3574.
doi: 10.1021/ja00246a013
19 Kumar N. A. ; Choi H. J. ; Shin Y. R. ; Chang D. W. ; Dai L. ; Baek J. B. ACS Nano 2012, 6, 1715.
doi: 10.1021/nn204688c
20 Zhang K. ; Zhang L. L. ; Zhao X. S. ; Wu J. Chem. Mater. 2010, 22, 1392.
doi: 10.1021/cm902876u
21 Lindfors T. ; Latonen R. M. Carbon 2014, 69, 122.
doi: 10.1016/j.carbon.2013.11.074
22 Co?kun E. ; Zaragoza-Contreras E. A. ; Salavagione H. J. Carbon 2012, 50, 2235.
doi: 10.1016/j.carbon.2012.01.041
23 Shulga Y. M. ; Baskakov S. A. ; Abalyaeva V. V. ; Efimov O.N. ; Shulga N. Y. ; Michtchenko A. ; Lartundo-Rojas L. ; Moreno L. A. ; Cabanas-Moreno J. G. ; Vasilets V. N. J.PowerSources 2013, 224, 195.
doi: 10.1016/j.jpowsour.2012.09.105
24 Zhang W. L. ; Park B. J. ; Choi H. J. Chem. Commun. 2010, 46, 5596.
doi: 10.1039/c0cc00557f
25 Luo Z. H. ; Zhu L. H. ; Zhang H. Y. ; Tang H. Q. Mater. Chem.Phys. 2013, 139, 572.
doi: 10.1016/j.matchemphys.2013.01.059
26 Zhang Q. ; Li Y. ; Feng Y. ; Feng W. Electrochim. Acta 2013, 90, 95.
doi: 10.1016/j.electacta.2012.11.035
27 Xu G. ; Wang N. ; Wei J. ; Lv L. ; Zhang J. ; Chen Z. ; Xu Q. Ind. Eng. Chem. Res. 2012, 51, 14390.
doi: 10.1021/ie301734f
28 Xu D. ; Xu Q. ; Wang K. ; Chen J. ; Chen Z. ACS Appl. Mater.Interfaces 2013, 6, 200.
doi: 10.1021/am404799a
29 Meng Y. ; Wang K. ; Zhang Y. ; Wei Z. Adv. Mater. 2013, 25, 6985.
doi: 10.1002/adma.201303529
30 Xu J. ; Wang K. ; Zu S. Z. ; Han B. H. ; Wei Z. ACS Nano 2010, 4, 5019.
doi: 10.1021/nn1006539
31 Huang W. S. ; MacDiarmid A. G. Polymer 1993, 34, 1833.
doi: 10.1016/0032-3861(93)90424-9
32 Blinova N. V. ; Sapurina I. ; Klimovi? J. ; Stejskal J. Polym.Degrad. Stabil. 2005, 88, 428.
doi: 10.1016/j.polymdegradstab.2004.11.014
33 Stejskal J. ; Kratochvíl P. ; Helmstedt M. Langmuir 1996, 12, 3389.
doi: 10.1021/la9506483
34 Ghosh P. ; Siddhanta S. K. ; Chakrabarti A. Eur. Polym. J. 1999, 35, 699.
doi: 10.1016/S0014-3057(98)00157-8
35 Sulimenko T. ; Stejskal J. ; Krivka I. ; Prokes J. Eur. Polym. J. 2001, 37, 219.
doi: 10.1016/S0014-3057(00)00104-X
36 Somani P. R. Mater. Chem. Phys. 2003, 77, 81.
doi: 10.1016/S0254-0584(01)00579-X
37 Abu Y. M. ; Aoki K. Electrochim. Acta 2005, 50, 3634.
doi: 10.1016/j.electacta.2005.01.004
38 Chen J. ; Zeng X. ; Aoki K. J. ; Nishiumi T. InternationalJournal of Chemistry 2015, 7, 1.
doi: 10.5539/ijc.v7n21-11
39 Vallés C. ; Jiménez P. ; Mu?oz E. ; Benito A. M. ; Maser W. K. J.Phys. Chem. C 2011, 115, 10468.
doi: 10.1021/jp201791h
40 Choi E. Y. ; Han T. H. ; Hong J. H. ; Kim J. E. ; Lee S. H. ; Kim H. W. ; Kim S. O. J.Mater. Chem. 2010, 20, 1907.
doi: 10.1039/b919074k
41 Paredes J. I. ; Villar-Rodil S. ; Solis-Fernandez P. ; Martinez-Alonso A. ; Tascon J. M. Langmuir 2009, 25, 5957.
doi: 10.1021/la804216z
42 Stankovich S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T. ; Ruoff R. S. Carbon 2007, 45, 1558.
doi: 10.1016/j.carbon.2007.02.034
43 McAllister M. J. ; Li J. L. ; Adamson D. H. ; Schniepp H. C. ; Abdala A. A. ; Liu J. ; Herrera-Alonso M. ; Milius D. L. ; Car R. ; Prud'homme R. K. ; Aksay I. A. Chem. Mater. 2007, 19, 4396.
doi: 10.1021/cm0630800
44 Zhang H. ; Yu H. M. ; Xu C. H. ; Zhang M. H. ; Pan X. H. ; Gao Y. F. Acta Phys -Chim. Sin. 2016, 32, 1634.
doi: 10.3866/PKU.WHXB201605111
张恒; 于惠梅; 徐朝和; 张明辉; 潘秀红; 高彦峰. 物理化学学报, 2016, 32, 1634.
doi: 10.3866/PKU.WHXB201605111
45 Stejskal J. ; Kratochvíl P. ; Radhakrishnan N. Synth. Met. 1993, 61, 225.
doi: 10.1016/0379-6779(93)91266-5
46 Stejskal J. ; Sapurina I. ; Trchová M. Prog. Polym. Sci. 2010, 35, 1420.
doi: 10.1016/j.progpolymsci.2010.07.006
47 Wang P. C. ; Huang Z. ; MacDiarmid A. G. Synth. Met. 1999, 101, 852.
doi: 10.1016/S0379-6779(98)01329-0
48 Mazur M. ; Predeep P. Polymer 2005, 46, 1724.
doi: 10.1016/j.polymer.2005.01.013
49 Tong Z. ; Yang Y. ; Wang J. ; Zhao J. ; Su B. L. ; Li Y. J.Mater. Chem. A 2014, 2, 4642.
doi: 10.1039/c3ta14671e
50 Li H. L. ; Wang J. X. ; Chu Q. X. ; Wang Z. ; Zhang F. B. ; Wang S. C. J.Power Sources 2009, 190, 578.
doi: 10.1016/j.jpowsour.2009.01.052
51 Zhu C. ; Guo S. ; Fang Y. ; Dong S. ACS Nano 2010, 4, 2429.
doi: 10.1021/nn1002387
52 Guo H. L. ; Wang X. F. ; Qian Q. Y. ; Wang F. B. ; Xia X. H. ACS Nano 2009, 3, 2653.
doi: 10.1021/nn900227d
53 Yang X. H. ; Xie Q. J. ; Yao S. Z. Synth. Met. 2004, 143, 119.
doi: 10.1016/j.synthmet.2003.10.027
54 O'Neil G. D. ; Weber A. W. ; Buiculescu R. ; Chaniotakis N.A. ; Kounaves S. P. Langmuir 2014, 30, 9599.
doi: 10.1021/la502053m
55 Yang W. Z. ; Widenkvist E. ; Jansson U. ; Grennberg H. New J. Chem. 2011, 35, 780.
doi: 10.1039/c0nj00968g
56 O'Neill A. ; Khan U. ; Nirmalraj P. N. ; Boland J. ; Coleman J.N. J.Phys. Chem. C 2011, 115, 5422.
doi: 10.1021/jp110942e
57 Gogotsi Y. ; Simon P. Science 2011, 334, 917.
doi: 10.1126/science.1213003
58 Fan W. ; Zhang C. ; Tjiu W. W. ; Pramoda K. P. ; He C. ; Liu T. ACS Appl. Mater. Interfaces 2013, 5, 3382.
doi: 10.1021/am4003827
59 Aoki K. ; Cao J. A. ; Hoshino Y. Electrochim. Acta 1993, 38, 1711.
doi: 10.1016/0013-4686(93)85066-8
60 Aoki K. ; Kawase M. J.Electroanal. Chem. 1994, 377, 125.
doi: 10.1016/0022-0728(94)03446-X
[1] 陈阳, 张梓澜, 隋志军, 刘芝婷, 周静红, 周兴贵. 氢氧化镍纳米线/三维石墨烯复合材料的制备及其电化学性能[J]. 物理化学学报, 2015, 31(6): 1105-1112.
[2] 汪建德, 彭同江, 孙红娟, 侯云丹. 水热反应温度对三维还原氧化石墨烯的形貌、结构和超级电容性能的影响[J]. 物理化学学报, 2014, 30(11): 2077-2084.
[3] 申保收, 冯旺军, 郎俊伟, 王儒涛, 邰志新, 阎兴斌. 电弧放电法制备石墨烯的硝酸改性及其电化学性能增强[J]. 物理化学学报, 2012, 28(07): 1726-1732.
[4] 李钊, 徐菊良, 李旭晏, 郭丽芳, 李劲, 蒋益明. 基于双相不锈钢制备超级电容器电极材料MnO2[J]. 物理化学学报, 2011, 27(06): 1424-1430.
[5] 孔德帅, 王建明, 皮欧阳, 邵海波, 张鉴清. 纳米多孔结构镍基复合膜电极的电化学法制备及其电容特性[J]. 物理化学学报, 2011, 27(04): 764-768.
[6] 张雷勇, 何水剑, 陈水亮, 郭乔辉, 侯豪情. 聚苯胺/碳纳米纤维复合材料的制备及电容性能[J]. 物理化学学报, 2010, 26(12): 3181-3186.
[7] 王涛, 何建平, 张传香, 周建华, 郭云霞, 陈秀, 狄志勇, 孙盾, 王道军. 有序介孔C/NiO复合材料的合成及其电化学性能[J]. 物理化学学报, 2008, 24(12): 2314-2320.
[8] 刘亚菲;胡中华;许琨;郑祥伟;高强. 活性炭电极材料的表面改性和性能[J]. 物理化学学报, 2008, 24(07): 1143-1148.
[9] 陈宏;陈劲松;周海晖;焦树强;陈金华;旷亚非. 纳米纤维聚苯胺在电化学电容器中的应用[J]. 物理化学学报, 2004, 20(06): 593-597.
[10] 刘献明;张以河;张校刚;付绍云. Ni-Ru复合氧化物的超电容特性研究[J]. 物理化学学报, 2004, 20(04): 417-420.