Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2004-2012    DOI: 10.3866/PKU.WHXB201705183
研究论文     
氧硫化碳在230nm光激发下的S(3P)解离通道
吴向坤, 高治, 于同坡, 周晓国, 刘世林
中国科学技术大学化学物理系, 合肥微尺度物质科学国家实验室, 合肥 230026
S(3P) Fragmentation Channel of Carbonyl Sulfide at 230 nm
WU Xiang-Kun, GAO Zhi, YU Tong-Po, ZHOU Xiao-Guo, LIU Shi-Lin
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
 全文: PDF(2129 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

在230 nm 激光激发下,氧硫化碳(OCS)分子迅速解离生成振动基态但高转动激发的CO(X1Σg+v = 0, J = 42–69)碎片,并通过共振增强多光子电离技术实现其离子化。通过检测处于J = 56–69转动激发态CO碎片的离子速度聚焦影像,我们获得了各转动态CO碎片的速度分布和空间角度分布,其中包含了S(1D) + CO的单重态和S(3PJ) + CO三重态解离通道的贡献。不同的转动态CO碎片对应三重态产物通道的量子产率略有不同,经加权平均我们得到230 nm附近光解OCS分子中S(3P)解离通道的量子产率为4.16%。结合高精度量化计算的OCS分子势能面和吸收截面的信息,我们获得了OCS光解的三重态解离机理,即基态OCS(X1A')分子吸收一个光子激发到弯曲的A1A'态之后,通过内转换跃迁回弯曲构型的基电子态,随后在C―S键断裂过程中与23A"(c3A")态强烈耦合并沿后者势能面绝热解离。

关键词: 氧硫化碳光解离共振增强多光子电离通道分支比离子速度成像    
Abstract:

Carbonyl sulfide (OCS) was photoexcited at 230 nm so that it dissociated into a vibrationally cold but rotationally hot CO (X1Σg+, v = 0, J = 42–69) fragment, which was eventually subjected to resonance enhanced multiphoton ionization. The kinetic energy release distribution and angular distribution of the CO fragment were obtained by detecting the time-sliced velocity map images of CO+ in various rotational states (J = 55–69), wherein both the singlet dissociation channel of S(1D) + CO and the triplet pathway of S(3PJ) + CO were involved. For the triplet fragment channel, the total quantum yield of OCS dissociation at 230 nm was estimated to be 4.16%, based on the measured branching ratioin every rotational state. High-level quantum chemical calculations on the potential energy surface and the absorption cross section of OCS revealed the dissociation mechanism along the triplet channel of OCS, with photolysis at 230 nm. The ground state OCS (X1A') is photoexcited to the bent A1A' state at 230 nm, which then decays back to X1A' in a bent structure via internal conversion and subsequently couples to the 23A"(c3A") state by spin-orbit coupling, followed by direct dissociation along its potential energy surface.

Key words: Carbonyl sulfide (OCS)    Photodissociation    Resonance enhanced multiphoton ionization    Branching ratio    Ion velocity imaging
收稿日期: 2017-04-22 出版日期: 2017-05-18
中图分类号:  O643  
基金资助:

国家自然科学基金(21373194,21573210),国家重点研发计划(2016YFF0200502),国家重点基础研究发展规划项目(973)(2013CB834602)和国家重大科学仪器专项(2012YQ220113)资助

通讯作者: 周晓国     E-mail: xzhou@ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴向坤
高治
于同坡
周晓国
刘世林

引用本文:

吴向坤, 高治, 于同坡, 周晓国, 刘世林. 氧硫化碳在230nm光激发下的S(3P)解离通道[J]. 物理化学学报, 2017, 33(10): 2004-2012.

WU Xiang-Kun, GAO Zhi, YU Tong-Po, ZHOU Xiao-Guo, LIU Shi-Lin . S(3P) Fragmentation Channel of Carbonyl Sulfide at 230 nm. Acta Phys. -Chim. Sin., 2017, 33(10): 2004-2012.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705183        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2004

(1) Hanst, P. L.; Spiller, L. L.; Watts, D. M.; Spence, J. W.; Miller, M. F. J. Air Pollut. Control Assoc. 1975, 25, 1220. doi: 10.1080/00022470.1975.10470199
(2) Montzka, S.; Aydin, M.; Battle, M.; Butler, J.; Saltzman, E.; Hall, B.; Clarke, A.; Mondeel, D.; Elkins, J. J. Geophys. Res. Atmos. 2004, 109, D22. doi: 10.1029/2004JD004686
(3) Cagnioncle, A. -M.; Parmentier, E. M.; Elkins-Tanton, L. T. J. Geophys. Res. Solid Earth 2007, 112, B9. doi: 10.1029/2007JB004934
(4) Andreae, M. O.; Crutzen, P. J. Science 1997, 276, 1052. doi: 10.1126/science.276.5315.1052
(5) Krysztofiak, G.; Té, Y. V.; Catoire, V.; Berthet, G.; Toon, G. C.; Jégou, F.; Jeseck, P.; Robert, C. Atmosphere-Ocean 2015, 53, 89. doi: 10.1080/07055900.2013.876609
(6) Brühl, C.; Lelieveld, J.; Crutzen, P. J.; Tost, H. Atmos. Chem. Phys. 2012, 12, 1239. doi: 10.5194/acp-12-1239-2012
(7) Forbes, G. S.; Cline, J. E. J. Am. Chem. Soc. 1939, 61, 151. doi: 10.1021/ja01870a049
(8) Sidhu, K.; Csizmadia, I.; Strausz, O.; Gunning, H. J. Am. Chem. Soc. 1966, 88, 2412. doi: 10.1021/ja00963a009
(9) Breckenridge, W.; Taube, H. J. Chem. Phys. 1970, 52, 1713. doi: 10.1063/1.1673209
(10) Ferro, B.; Reuben, B.. Trans. Faraday Soc. 1971, 67, 2847.
(11) Rudolph, R. N.; Inn, E. C. J. Geophys. Res. Oceans 1981, 86, 9891. doi: 10.1029/JC086iC10p09891
(12) Molina, L.; Lamb, J.; Molina, M. Geophys. Res. Lett. 1981, 8, 1008. doi: 10.1029/GL008i009p01008
(13) Zhao, Z.; Stickel, R.; Wine, P. Geophys. Res. Lett. 1995, 22, 615. doi: 10.1029/95GL00170
(14) Wu, C. R.; Chen, F.; Judge, D. J. Quant. Spectrosc. Radiat. Transf. 1999, 61, 265.
(15) Colussi, A. J.; Leung, F.-Y.; Hoffmann, M. R. Environ. Chem 2004, 1, 44. doi: 10.1071/EN04010
(16) Danielache, S. O.; Nanbu, S.; Eskebjerg, C.; Johnson, M. S.; Yoshida, N. J. Chem. Phys. 2009, 131, 024307. doi: 10.1063/1.3156314
(17) Hattori, S.; Danielache, S.; Johnson, M. S.; Schmidt, J. A.; Kjaergaard, H. G.; Toyoda, S.; Ueno, Y.; Yoshida, N. Atmos. Chem.Phys. 2011, 11, 10293. doi: 10.5194/acp-11-10293-2011
(18) Sunanda, K.; Rajasekhar, B.; Saraswathy, P.; Jagatap, B. J. Quant.Spectrosc. Radiat. Transf. 2012, 113, 58. doi: 10.1016/j.jqsrt.2011.09.009
(19) Limão-Vieira, P.; Da Silva, F. F.; Almeida, D.; Hoshino, M.; Tanaka, H.; Mogi, D.; Tanioka, T.; Mason, N.; Hoffmann, S.; Hubin-Franskin, M. -J. J. Chem. Phys. 2015, 142, 064303. doi: 10.1063/1.4907200
(20) Grosch, H.; Fateev, A.; Clausen, S. J. Quant. Spectrosc. Radiat.Transf. 2015, 154, 28. doi: 10.1016/j.jqsrt.2014.11.020
(21) Toulson, B. W.; Murray, C. J. Phys. Chem. A 2016, 120, 6745. doi: 10.1021/acs.jpca.6b06060
(22) Schmidt, J. A.; Johnson, M. S.; McBane, G. C.; Schinke, R. J. Chem.Phys. 2012, 136, 131101. doi: 10.1063/1.3701699
(23) Schmidt, J. A.; Johnson, M. S.; McBane, G. C.; Schinke, R. J. Chem.Phys. 2012, 137, 054313. doi: 10.1063/1.4739756
(24) Suzuki, T.; Katayanagi, H.; Nanbu, S.; Aoyagi, M. J. Chem. Phys. 1998, 109, 5778. doi: 10.1063/1.477200
(25) Sivakumar, N.; Burak, I.; Cheung, W.; Houston, P.; Hepburn, J. J. Phys. Chem. 1985, 89, 3609. doi: 10.1021/j100263a008
(26) Sivakumar, N.; Hall, G.; Houston, P.; Hepburn, J.; Burak, I. J. Chem.Phys. 1988, 88, 3692. doi: 10.1063/1.453869
(27) Nan, G.; Burak, I.; Houston, P. Chem. Phys. Lett. 1993, 209, 383. doi: 10.1016/0009-2614(93)80035-N
(28) Katayanagi, H.; Mo, Y.; Suzuki, T. Chem. Phys. Lett. 1995, 247, 571. doi: 10.1016/0009-2614(95)01253-2
(29) Sato, Y.; Matsumi, Y.; Kawasaki, M.; Tsukiyama, K.; Bersohn, R. J. Phys. Chem. 1995, 99, 16307. doi: 10.1021/j100044a017
(30) Mo, Y.; Katayanagi, H.; Heaven, M. C.; Suzuki, T. Phys. Rev. Lett. 1996, 77, 830. doi: 10.1103/PhysRevLett.77.830
(31) Sugita, A.; Mashino, M.; Kawasaki, M.; Matsumi, Y.; Bersohn, R.; Trott-Kriegeskorte, G.; Karl-Heinz, G. J. Chem. Phys. 2000, 112, 7095. doi: 10.1063/1.481324
(32) Katayanagi, H.; Suzuki, T. Chem. Phys. Lett. 2002, 360, 104. doi: 10.1016/S0009-2614(02)00788-1
(33) Van den Brom, A. J.; Rakitzis, T. P.; van Heyst, J.; Kitsopoulos, T. N.; Jezowski, S. R.; Janssen, M. H. J. Chem. Phys. 2002, 117, 4255. doi: 10.1063/1.1496464
(34) Rakitzis, T. P.; van den Brom, A. J.; Janssen, M. H. Science 2004, 303, 1852. doi: 10.1126/science.1094186
(35) Kim, M. H.; Li, W.; Lee, S. K.; Suits, A. G. Can. J. Chem. 2004, 82, 880. doi: 10.1139/V04-072
(36) Lipciuc, M. L.; Janssen, M. H. Phys. Chem. Chem. Phys. 2006, 8, 3007. doi: 10.1039/b605108a
(37) Brouard, M.; Green, A.; Quadrini, F.; Vallance, C. J. Chem. Phys. 2007, 127, 084304. doi: 10.1063/1.2757618
(38) Brouard, M.; Quadrini, F.; Vallance, C. J. Chem. Phys. 2007, 127, 084305. doi: 10.1063/1.2757619
(39) Lipciuc, M. L.; Rakitzis, T. P.; Meerts, W. L.; Groenenboom, G. C.; Janssen, M. H. M. Phys. Chem. Chem. Phys. 2011, 13, 8549. doi: 10.1039/c0cp02671a
(40) Wei, W.; Wallace, C. J.; McBane, G. C.; North, S. W. J. Chem. Phys. 2016, 145, 024310. doi: 10.1063/1.4955189
(41) McBane, G. C.; Schmidt, J. A.; Johnson, M. S.; Schinke, R. J. Chem.Phys. 2013, 138, 094314. doi: 10.1063/1.4793275
(42) Rijs, A. M.; Backus, E. H.; de Lange, C. A.; Janssen, M. H.; Westwood, N. P.; Wang, K.; McKoy, V. J. Chem. Phys. 2002, 116, 2776. doi: 10.1063/1.1434993
(43) Lee, S. K.; Silva, R.; Thamanna, S.; Vasyutinskii, O. S.; Suits, A. G. J. Chem. Phys. 2006, 125, 144318. doi: 10.1063/1.2357948
(44) Gebhardt, C. R.; Rakitzis, T. P.; Samartzis, P. C.; Ladopoulos, V.; Kitsopoulos, T. N. Rev. Sci. Instrum. 2001, 72, 3848. doi: 10.1063/1.1403010
(45) Tang, X.; Zhou, X.; Niu, M.; Liu, S.; Sun, J.; Shan, X.; Liu, F.; Sheng, L. Rev. Sci. Instrum. 2009, 80, 113101. doi: 10.1063/1.3250872
(46) Tjossem, P. J.; Smyth, K. C. J. Chem. Phys. 1989, 91, 2041. doi: 10.1063/1.457064
(47) Rottke, H.; Zacharias, H. Opt. Commun. 1985, 55, 87. doi: 10.1016/0030-4018(85)90306-2
(48) Bray, R.; Hochstrasser, R. -M. Mol. Phys. 1976, 31, 1199. doi: 10.1080/00268977600100931
(49) Holdy, K. E.; Klotz, L. C.; Wilson, K. R. J. Chem. Phys. 1970, 52, 4588. doi: 10.1063/1.1673690
(50) Zare, R. N. Mol. Photochem 1972, 4, 1.

[1] 孙中发, 高治, 吴向坤, 唐国强, 周晓国, 刘世林. N2O+离子B2П态的光谱与光解离动力学[J]. 物理化学学报, 2015, 31(5): 829-835.
[2] 吴丹, 张立敏, 周丹娜. N2O+经由B2ПiX2П跃迁的光解离机理研究[J]. 物理化学学报, 2014, 30(8): 1575-1580.
[3] 周丹娜, 陈琳, 吴丹, 张立敏. OCS+经由A2ПX2П激发的光解离光谱[J]. 物理化学学报, 2012, 28(04): 963-970.
[4] 吴曼曼, 唐小锋, 牛铭理, 周晓国, 戴静华, 刘世林. 氯甲烷分子在13至17 eV激发能量范围内的电离解离[J]. 物理化学学报, 2011, 27(12): 2749-2754.
[5] 甄承, 唐小锋, 周晓国, 刘世林. 离子速度成像在阈值光电子-光离子符合测量中的应用和改进[J]. 物理化学学报, 2011, 27(07): 1574-1578.
[6] 慈成刚, 段雪梅, 刘靖尧, 孙家钟. 叠氮化氰的光解离机理[J]. 物理化学学报, 2010, 26(10): 2787-2792.
[7] 张昌华, 张延, 张嵩, 张冰. 氯碘甲烷在A带的光解动力学[J]. 物理化学学报, 2009, 25(08): 1708-1712.
[8] 张延 王骏 郑秋莎 刘玉柱 张蓉蓉 胡长进 唐碧峰 张冰. 离子速度成像方法研究碘代正戊烷的紫外光解动力学[J]. 物理化学学报, 2009, 25(04): 661-667.
[9] 曹振洲 张昌华 王艳梅 张锋 华林强 张冰. 邻溴甲苯在234和267 nm的光解动力学[J]. 物理化学学报, 2009, 25(03): 423-429.
[10] 张锋, 曹振洲, 覃晓, 刘玉柱, 王艳梅, 张冰. 2-溴噻吩和3-溴噻吩在267 nm的C—Br键解离机理[J]. 物理化学学报, 2008, 24(08): 1335-1341.
[11] 陈荫;张昌华;曹振洲;张冰. 离子速度成像方法研究溴代环己烷的紫外光解动力学[J]. 物理化学学报, 2008, 24(05): 844-848.
[12] 马玉超;张立敏;庄秀娟;王金婷;杨茂萍;俞书勤. CS2+离子 C2Σg+B2Σu+跃迁的Franck-Condon因子计算以及与光解离谱的比较[J]. 物理化学学报, 2006, 22(12): 1532-1536.
[13] 渠洪波;梁峰;魏政荣;李海洋;张冰. 离子速度影像法研究n-C7H15Br分子光解反应动力学[J]. 物理化学学报, 2006, 22(09): 1106-1110.
[14] 郑秋莎;唐颖;朱荣淑;魏政荣;张冰. 离子速度成像方法研究C8H17Br分子的光解动力学[J]. 物理化学学报, 2006, 22(04): 460-464.
[15] 周晓国;刘世林. 乙烯基A2A″电子态的振转分析[J]. 物理化学学报, 2006, 22(04): 481-485.