Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (10): 2106-2112    DOI: 10.3866/PKU.WHXB201705186
论文     
单分散铁氧体纳米颗粒的生长机制与成分偏聚的透射电子显微研究
刘为燕1,李亚东1,2,刘甜1,干林1,2,*()
1 清华大学深圳研究生院,能源与环境学部,广东深圳518055
2 清华大学深圳研究生院,材料与器件检测中心,电子显微镜实验室,广东深圳518055
Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy
Wei-Yan LIU1,Ya-Dong LI1,2,Tian LIU1,Lin GAN1,2,*()
1 Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
2 Electron Microscopy Laboratory, Materials and Devices Testing Center, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
 全文: PDF(1688 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

理解纳米晶的生长机制对单分散纳米晶的可控合成至关重要。本文以热分解法制备的双金属铁氧体(钴铁氧和锰铁氧)纳米颗粒为例,利用透射电子显微镜(TEM)系统研究了铁氧体纳米晶的生长机制,揭示了由此造成的成分偏聚现象。对不同时间阶段的反应产物的分析结果表明,两步加热法(即先后在相对低的温度和相对高的温度下加热反应)是制备高质量的单分散铁氧体纳米晶的关键;通过控制低温反应阶段的时间可实现纳米晶的形核阶段和生长阶段的有效分离,从而有利于单分散纳米晶的合成。利用扫描透射电子显微镜(STEM)及电子能量损失谱(EELS)谱学成像技术分析,我们进一步发现了双金属铁氧体纳米晶中的成分偏聚现象,表明双金属铁氧体纳米晶在形核阶段主要形成富Fe的核芯,而在生长阶段则形成更富Co/Mn的双金属铁氧体壳层。这些结果对制备高质量的单分散铁氧体纳米晶具有重要的指导意义,同时也有助于正确理解热分解法制备的铁氧体纳米晶的表面成分和相关表面物理化学性质。

关键词: 纳米晶生长机制铁氧体表面偏聚透射电子显微镜电子能量损失谱    
Abstract:

Understanding the growth mechanism of nanocrystals is crucial for the synthesis of high-quality monodispersed nanoparticles. In contrast to the widely studied growth mechanism of metal nanocrystals, the growth mechanism of metal oxide nanoparticles is still poorly understood. Exemplified by cobalt/manganese ferrite nanoparticles prepared by thermal decomposition, we reveal the growth mechanism and associated compositional segregations of bimetallic metal oxide nanoparticles by using transmission electron microscopy combined with electron energy loss spectroscopy (EELS). We found that a two-stage heating protocol, involving a first-stage heating at a relatively lower temperature followed by a second-stage heating at a relatively higher temperature, is crucial to synthesize monodispersed ferrite nanoparticles. Controlling the reaction time of the first-stage heating can effectively decouple the nucleation stage and growth stage of ferrite nanoparticles, leading to monodispersed nanoparticles with a narrow size distribution. EELS spectrum imaging further reveals previously unreported compositional segregations in the as-prepared ferrite nanoparticles, suggesting that an Fe-rich core formed at the nucleation stage and a Co-/Mn-rich shell formed at the growth stage. Our results provide useful insight into the synthesis of high-quality monodispersed metal oxide nanoparticles as well as a correct understanding of the surface chemistry and related physiochemical properties of spinel oxide nanocrystals prepared by thermal decomposition.

Key words: Nanocrystal growth mechanism    Ferrite nanocrystals    Surface segregation    Transmission electron microscopy    Electron energy loss spectroscopy
收稿日期: 2017-03-30 出版日期: 2017-05-18
中图分类号:  O642  
基金资助: 广东省自然科学基金杰出青年项目(2016A030306035);深圳市基础研究项目(JCYJ20160531194754308)
通讯作者: 干林     E-mail: lgan@sz.tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘为燕
李亚东
刘甜
干林

引用本文:

刘为燕,李亚东,刘甜,干林. 单分散铁氧体纳米颗粒的生长机制与成分偏聚的透射电子显微研究[J]. 物理化学学报, 2017, 33(10): 2106-2112.

Wei-Yan LIU,Ya-Dong LI,Tian LIU,Lin GAN. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy. Acta Phys. -Chim. Sin., 2017, 33(10): 2106-2112.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705186        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I10/2106

图1  前驱体中Co(acac)2 : Fe(acac)3摩尔比为1 : 2时不同反应阶段所得到的CFO纳米颗粒形貌、尺寸及成分变化
图2  利用STEM-EELS谱学成像获得的钴铁氧纳米晶中的元素分布图
图3  热分解法制备铁氧体纳米晶的生长机制示意图
图4  改变低温反应阶段反应时间制备所得到的MFO纳米颗粒
图5  利用STEM-EELS谱学成像获得的MFO纳米晶中的元素分布及Mn元素和Fe元素的价态分析
1 Zhu H. ; Zhang S. ; Huang Y. X. ; Wu L. ; Sun S. Nano Lett. 2013, 13, 2947.
doi: 10.1021/nl401325u
2 Sartale S. D. ; Lokhande C. D. ; Ganesan V. Phys. Status Solidi A 2005, 202, 85.
doi: 10.1002/pssa.200406898
3 Wu Z. S. ; Yang S. ; Sun Y. ; Parvez K. ; Feng X. ; Mullen K. J. Am.Chem. Soc. 2012, 134, 9082.
doi: 10.1021/ja3030565
4 Singh J. P. ; Singh N. K. ; Singh R. N. Int. J. Hydrog. Energy 1999, 24, 322.
doi: 10.1016/S0360-3199(98)00084-6
5 Singh N. K. ; Singh R. N. Indian J. Chem. 1999, 38, 491.
6 Singh R. N. ; Singh J. P. ; Lal B. ; Thomas M. J. K. ; Bera S. Electrochim. Acta 2006, 51, 5515.
doi: 10.1016/j.electacta.200602028
7 Landon J. ; Demeter E. ; ?no?lu N. ; Keturakis C. ; Wachs I. E. ; Vasi? R. ; Frenkel A. I. ; Kitchin J. R. ACS Catal. 2012, 2, 1793.
doi: 10.1021/cs3002644
8 Khurshid H. ; Li W. F. ; Chandra S. ; Phan M. H. ; Hadjipanayis G.C. ; Mukherjeea P. ; Srikanth H. Nanoscale 2013, 5, 7942.
doi: 10.1039/c3nr02596a
9 Sun S. ; Zeng H. ; Robinson D. B. ; Raoux S. ; Rice P. M. ; Wang S.X. ; Li G. J. Am. Chem. Soc. 2004, 126, 273.
doi: 10.1021/ja0380852
10 Xie J. ; Liu G. ; Eden H. S. ; Ai H. ; Chen X. Y. Acc. Chem.Res. 2011, 44, 883.
doi: 10.1021/ar200044b
11 Kumar C. S. ; Mohammad F. Adv. Drug Deliv. Rev. 2011, 63, 789.
doi: 10.1016/j.addr.2011.03.008
12 Hao R. ; Xing R. ; Xu Z. ; Hou Y. ; Gao S. ; Sun S. Adv.Mater. 2010, 22, 2729.
doi: 10.1002/adma.201000260
13 Liong M. ; Lu J. ; Kovochich M. ; Xia T. ; Ruehm S. G. ; Nel A. E. ; Tamanoi F. ; Zink J. I. ACS Nano 2008, 2, 889.
doi: 10.1021/nn800072t
14 Kikuchi T. ; Kasuya R. ; Endo S. ; Nakamura A. ; Takai T. ; Metzler-Nolte N. ; Balachandran J. J. Magn. Magn. Mater. 2011, 323, 1216.
doi: 10.1016/j.jmmm.2010.11.009
15 Xu Z. C. ; Shen C. M. ; Hou Y. L. ; Gao H. J. ; Sun S. S. Chem. Mater. 2009, 21, 1778.
doi: 10.1021/cm802978z
16 Zeng H. ; Rice P. M. ; Wang S. X. ; Sun S. J. Am. Chem. Soc. 2004, 126, 11458.
doi: 10.1021/ja045911d
17 Jana N. R. ; Chen Y. F. ; Peng X. G. Chem. Mater. 2004, 16, 3931.
doi: 10.1021/cm049221k
18 Li M. ; Xiong Y. ; Liu X. ; Bo X. ; Zhang Y. ; Han C. ; Guo L. Nanoscale 2015, 7, 8920.
doi: 10.1039/c4nr07243j
19 Harris R. A. ; Shumbula P. M. ; van der Walt H. Langmuir 2015, 31, 3934.
doi: 10.1021/acs.langmuir.5b00671
20 Gan L. ; Cui C. H. ; Heggen M. ; Dionigi F. ; Rudi S. ; Strasser P. Science 2014, 346, 1502.
doi: 10.1126/science.1261212
21 Gan L. ; Rudi S. ; Cui C. H. ; Heggen M. ; Strasser P. Small 2016, 12, 3189.
doi: 10.1002/smll.201600027
22 Niu Z. Q. ; Becknell N. ; Yu Y. ; Kim D. ; Chen C. ; Kornienko N. ; Somorjai G. A. ; Yang P. D. Nature Mater. 2016, 15, 1188.
doi: 10.1038/nmat4724
23 Zheng H. M. ; Smith R. K. ; Jun Y. W. ; Kisielowski C. ; Dahmen U. ; Alivisatos A. P. Science 2009, 324, 1309.
doi: 10.1126/science.1172104
24 Snyder J. ; McCue I. ; Livi K. ; Erlebacher J. J. Am. Chem.Soc. 2012, 134, 8633.
doi: 10.1021/ja3019498
25 Xia Y. N. ; Xiong Y. J. ; Lim B. ; Skrabalak S. E. Angew.Chem. Int. Edit. 2009, 48, 60.
doi: 10.1002/anie.200802248
26 Liang W. ; Zhang X. ; Bustillo K. ; Chiu C. H. ; Wu W. W. ; Xu J. ; Chu Y. H. ; Zheng H. Chem. Mater. 2015, 27, 8146.
doi: 10.1021/acs.chemmater.5b03930
27 Zhang F. ; Yuan C. ; Zhu J. ; Wang J. ; Zhang X. ; Lou X. W. D. Adv. Funct. Mater. 2013, 23, 3909.
doi: 10.1002/adfm.201203844
28 LaMer V. K. ; Dinegar R. H. J. Am. Chem. Soc. 1950, 72, 4847.
doi: 10.1021/ja01167a001
29 Watzky M. A. ; Finke R. G. J. Am. Chem. Soc. 1997, 119, 10382.
doi: 10.1021/ja9705102
30 Schmid H. K. ; Mader W. Micron 2006, 37, 426.
doi: 10.1016/j.micron.2005.12.004
31 Van Aken P. A. ; Liebscher B. Phys. Chem. Miner. 2002, 29, 188.
doi: 10.1007/s00269-001-0222-6
[1] 段园,陈明树,万惠霖. O2和CO在Ni(111)表面的吸附活化[J]. 物理化学学报, 2018, 34(12): 1358-1365.
[2] 蒋奥克,赵雅文,龙重,张雷,胡殷,曾荣光,张延志,肖红,朱康伟,刘柯钊. EXELFS对二氧化铀晶格结构的分析[J]. 物理化学学报, 2017, 33(2): 364-369.
[3] 李亚东,邓玉峰,潘智毅,魏印平,赵世玺,干林. LiNi0.5Mn1.5O4正极材料表面的双电子能量损失谱谱学成像[J]. 物理化学学报, 2017, 33(11): 2293-2300.
[4] 黄威,邬春阳,曾跃武,金传洪,张泽. 富锂正极材料Li1.2Mn0.54Co0.13Ni0.13NaxO2表面结构的电子显微分析[J]. 物理化学学报, 2016, 32(9): 2287-2292.
[5] 黄威,邬春阳,曾跃武,金传洪,张泽. P2型钠离子电池正极材料Na0.66Mn0.675Ni0.1625Co0.1625O2的表面重构及其演变的电子显微表征[J]. 物理化学学报, 2016, 32(6): 1489-1494.
[6] 戴剑锋, 高会芳, 王军红, 付比. La-Co共掺杂的M型锶铁氧体纳米纤维的制备和磁性能[J]. 物理化学学报, 2012, 28(03): 729-732.
[7] 刘建华, 游盾, 于美, 李松梅. 均匀共沉淀法制备钛酸钡-钡铁氧体核-壳结构粒子[J]. 物理化学学报, 2011, 27(05): 1254-1260.
[8] 郭霞, 李华, 郭荣. 寡聚核苷酸/单链阳离子表面活性剂囊泡与沉淀共存[J]. 物理化学学报, 2010, 26(08): 2195-2199.
[9] 刘建才, 张新明, 陈明安, 唐建国, 刘胜胆. 密度泛函理论预测微量元素在Al(100)表面的偏聚[J]. 物理化学学报, 2009, 25(12): 2519-2523.
[10] 甘治平;官建国. 化学自组装法制备钡铁氧体亚微空心球[J]. 物理化学学报, 2006, 22(02): 189-192.
[11] 张晟卯;张春丽;张经纬;张治军;党鸿辛;吴志申;刘维民. 室温离子液体中银纳米微粒的制备与结构表征[J]. 物理化学学报, 2004, 20(05): 554-556.
[12] 张寒洁;鲍世宁;何丕模;王穗东;冯明凯;李振声;李述汤. 有或没有Alq3参与情况下LiF和Al的化学反应[J]. 物理化学学报, 2003, 19(08): 770-773.
[13] 阮圣平;吴凤清;王永为;张力乌日娜;宣丽. 钡铁氧体纳米复合材料的制备及其微波吸收性能[J]. 物理化学学报, 2003, 19(03): 275-277.
[14] 迟广俊;姚素薇;范君;张卫国;王宏智. 银纳米线的TEM表征[J]. 物理化学学报, 2002, 18(06): 532-535.
[15] 冯(言贝)民. 乙腈、苯基氰在Cu(111)与Pd(100)表面上的吸附与反应[J]. 物理化学学报, 1992, 8(03): 313-320.