Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2510-2516    DOI: 10.3866/PKU.WHXB201705311
论文     
基于三维花状五氧化二铌及活性炭的锂离子混合电容器
贾朝阳1,2,刘美男2,*(),赵新洛3,王贤树2,潘争辉2,张跃钢2,4,*()
1 上海大学化学系,上海200444
2 中国科学院苏州纳米技术与纳米仿生研究所,江苏苏州215123
3 上海大学物理系,上海200444
4 清华大学物理系,北京100084
Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials
Zhao-Yang JIA1,2,Mei-Nan LIU2,*(),Xin-Luo ZHAO3,Xian-Shu WANG2,Zheng-Hui PAN2,Yue-Gang ZHANG2,4,*()
1 Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
3 Department of Physics, Shanghai University, Shanghai 200444, P. R. China
4 Department of Physics, Tsinghua University, Beijing 100084, P. R. China
 全文: PDF(1060 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

锂离子混合电容器由于兼备锂离子电池和超级电容器的优势,即较高的能量密度和功率密度,而成为当前能量存储体系的研究热点。本工作合成了具有三维花状微纳结构的正交相五氧化二铌(T-Nb2O5),并将其与活性炭(AC)相匹配,设计出一种新型的T-Nb2O5/AC锂离子混合电容器。循环伏安和恒电流充放电的测试结果表明该锂离子混合电容器具有较好的电化学性能,如在碳酸酯类的有机电解液中,工作电压可达到3.0 V;在100 mA·g-1的电流密度下,电容器的比能量和比功率密度可达到53.79 Wh·kg-1和294 W·kg-1;在200 mA·g-1的电流密度下,经过1000次充放电循环后,该电容器的比能量保持率为73%。由此可见,本工作开发的T-Nb2O5/AC锂离子混合电容器将在高功率的储能设备中有很好地应用前景。

关键词: 锂离子混合电容器三维花状结构正交相五氧化二铌有机电解液活性炭    
Abstract:

A lithium ion hybrid supercapacitor system with battery and supercapacitor characteristics has the potential to meet the increasing demand for an energy storage device with both high energy and power densities. In this work, orthorhombic Nb2O5 (T-Nb2O5) with three-dimensional (3D) flower-like structures was synthesized by a facile hydrothermal reaction and an annealing process. A lithium ion hybrid supercapacitor was constructed by using T-Nb2O5 as an anode and commercial activated carbon (AC) as a cathode. The electrochemical performance of these T-Nb2O5/AC hybrid capacitors was measured by cyclic voltammetry and galvanostatic charge/discharge tests. The results showed that the working voltage of the hybrid supercapacitor could reach 3.0 V in the organic carbonate electrolyte system. The as-assembled device showed impressive power density of 294 W·kg-1 and energy density of 53.79 W·h·kg-1 at a current density of 100 mA·g-1 with a voltage range of 0.5-3.5 V. Moreover, it also showed excellent cycling stability with a retention of 73% after 1000 cycles at 200 mA·g-1. These results demonstrate that this novel lithium ion hybrid supercapacitor based on T-Nb2O5 with 3D flower-like structures and AC is a promising candidate for high power density energy storage applications.

Key words: Lithium ion hybrid supercapacitor    Three-dimensional flower-like structure    Orthorhombic Nb2O5    Organic electrolyte    Activate carbon
收稿日期: 2017-05-08 出版日期: 2017-05-31
中图分类号:  O646  
基金资助: 国家自然科学基金(51402345)
通讯作者: 刘美男,张跃钢     E-mail: mnliu2013@sinano.ac.cn;ygzhang2012@sinano.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贾朝阳
刘美男
赵新洛
王贤树
潘争辉
张跃钢

引用本文:

贾朝阳,刘美男,赵新洛,王贤树,潘争辉,张跃钢. 基于三维花状五氧化二铌及活性炭的锂离子混合电容器[J]. 物理化学学报, 2017, 33(12): 2510-2516.

Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201705311        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2510

图1  T-Nb2O5的XRD图(a),拉曼光谱图(b)
图2  三维花状T-Nb2O5的扫描电镜图(a, b)及透射电镜图(c, d)
图3  三维花状T-Nb2O5的循环伏安曲线
图4  半电池测试中三维花状T-Nb2O5及c-Nb2O5在0.5C倍率下的循环性能图(a);三维花状T-Nb2O5在0.1C至5C的倍率性能图(b)
图5  AC在3.0-4.5 V(vs. Li/Li+)电压窗口下的循环性能图(a);不同正负极质量比下T-Nb2O5/AC电容器的Ragone图(b)
图6  T-Nb2O5/AC锂离子混合电容器在不同扫描速度下的循环伏安曲线图(a),在不同电流密度下的充放电曲线(b),不同电容器的Ragone对比图(c),T-Nb2O5/AC锂离子混合电容器的在200 mA g-1电流密度下的循环性能曲线(d)
1 Winter M. ; Brodd R. J Chem. Rev. 2004, 104, 4245.
doi: 10.1021/cr020730k
2 Zheng Z. M. ; Zhang P. ; Yan X. B Chin. Sci. Bull 2013, 58, 3115.
doi: 10.1360/972013-760
郑宗敏; 张鹏; 阎兴斌. 科学通报, 2013, 58, 3115.
doi: 10.1360/972013-760
3 An B. K. H. ; Kim W. S. ; Park Y. S. ; Moon J. M. ; Bea D. J. ; Lim S. C. ; Lee Y. S. ; Lee Y. H Adv. Funct. Mater 2001, 11, 387.
doi: 10.1002/1616-3028(200110)11:53.3.CO;2-7
4 Yoshino A Angew. Chem. Int. Ed 2012, 51, 5798.
doi: 10.1002/anie.201105006
5 Simon P. ; Gogotsi Y Nat. Mater 2008, 7, 845.
doi: 10.1038/nmat2297
6 Miller J R ; Simon P Science 2008, 321, 651.
doi: 10.1126/science.1158736
7 Su Y. F. ; Wu F. ; Bao L. Y. ; Xu B. ; Chen S Acta Chim. Sin 2008, 66, 591.
doi: 10.3321/j.issn:0567-7351.2008.06.001
苏岳峰; 吴锋; 包丽颖; 徐斌; 陈实. 化学学报, 2008, 66, 591.
doi: 10.3321/j.issn:0567-7351.2008.06.001
8 Jiang J. M. ; Nie P. ; Dong S.P ; Wu Y.T ; Zhang X. G Acta Phys. -Chim. Sin 2017, 33, 780.
doi: 10.3866/PKU.WHXB201612291
将江民; 聂平; 董升阳; 吴宇婷; 张校刚. 物理化学学报, 2017, 33, 780.
doi: 10.3866/PKU.WHXB201612291
9 Naoi K. ; Naoi W. ; Aoyagi S. ; Miyamoto J. I. ; Kamino T Acc. Chem. Res 2012, 46, 1075.
doi: 10.1021/ar200308h
10 Liu H. J. ; Xia Y. Y Prog. Chem 2011, 23, 595.
刘海晶; 夏永姚. 化学进展, 2011, 23, 595.
11 Naoi K. ; Ishimoto S. ; Miyamoto J. I. ; Naoi W Energy Environ. Sci 2012, 5, 9363.
doi: 10.1039/C2ee21675b
12 Cheng L. ; Liu H. J. ; Zhang J. J. ; Xiong H. M. ; Xia Y.Y. J.Electrochem. Soc 2006, 153, A1472.
doi: 10.1149/1.2204872
13 Naoi K Fuel. Cells 2010, 10, 825.
doi: 10.1002/fuce.201000041
14 Chen Z. ; Augustyn V. ; Wen J. ; Zhang Y. W. ; Shen M. Q. ; Dunn B. ; Lu Y. F Adv. Mater 2011, 23, 791.
doi: 10.1002/adma.201003658
15 Aravindan V. ; Sundaramurthy J. ; Jain A. ; Kumar S. ; Ling W.C. ; Ramarkrishna S. ; Srinivasan M. P. ; Madhavi S ChemSusChem 2014, 7, 1858.
doi: 10.1002/cssc.201400157
16 Augustyn V. ; Come J. ; Lowe M. A. ; Kim J. W. ; Taberna P. L. ; Tolbert S. H. ; Abrüna H. D. ; Simon P. ; Dunn B Nat. Mater 2013, 12, 518.
doi: 10.1038/NMAT3601
17 Viet A. L. ; Reddy M. V. ; Jose R. ; Chowdari B. V. R. ; Ramakrishna S. J. Phys. Chem. C. 2014, 114, 664.
doi: 10.1021/jp9088589
18 Liu M. N. ; Yan C. ; Zhang Y. G Sci. Rep 2015, 5, 8326.
doi: 10.1038/srep08326
19 Come J. ; Augustyn V. ; Kim J. W. ; Rozier P. ; Taberna P. L. ; Gogotsi P. ; Log J. W ; Dunn B. ; Simon P. J Electrochem. Soc 2014, 161, A718.
doi: 10.1149/2.040405jes
20 Li G. Z. ; Qiu Y. C. ; Hou Y. ; Li H. F. ; Zhou L. S. ; Deng H. ; Zhang Y.G. J. Mater. Chem. A 2015, 3, 1103.
doi: 10.1039/c4ta04864d
21 Kim S. I. ; Lee J. S. ; Ahn H. J. ; Song H. K. ; Jang J. H ACS Appl. Mat. Interfaces 2013, 5, 1596.
doi: 10.1021/am3021894
22 Tang Y. X. ; Rui X. H. ; Zhang Y. Y. ; Lim T. M. ; Dong Z. L. ; Hng H. H. ; Chen X. D. ; Yan Q. Y. ; Chen Z. J. Mater. Chem. A 2013, 1, 82.
doi: 10.1039/c2ta00351a
23 Griffith K. J. ; Forse A. C. ; Griffin J. M. ; Grey C. P. J Am. Chem. Soc 2016, 138, 8888.
doi: 10.1021/jacs.6b04345
24 Arunkumar P. ; Ashish A. G. ; Babu B. ; Sarang S. ; Suresh A. ; Sharma C. H. ; Thalakulam M. ; Shaijumon M. M RSC Adv 2015, 5, 59997.
doi: 10.1039/c5ra07895d
25 Xie S. B. ; Iglesia E. ; Bell A. T. J. Phys. Chem. B 2001, 105, 5144.
doi: 10.1021/jp004434s
26 Wang X. L. ; Li G. ; Chen Z. ; Augustyn V. ; Ma X.M. ; Wang G. ; Dunn B. ; Lu Y. F Adv. Energy Mater 2011, 1, 1089.
doi: 10.1002/aenm.201100332
27 Tang C. H. ; Tang Z. ; Gong H. J Electrochem. Soc 2012, 159, A651.
doi: 10.1149/2.074205jes
28 Deng L. J. ; Zhu G. ; Wang J. F. ; Kang L. P. ; Liu Z. H. ; Yang Z.P. ; Wang Z. L. J Power Sources 2011, 196, 10782.
doi: 10.1016/j.jpowsour.2011.09.005
29 Aravindan V. ; Shubha N. ; Ling W. C. ; Madhavi S. J. Mater. Chem. A 2013, 1, 6145.
doi: 10.1039/C3TA11103B
30 Chen Z. ; Augustyn V. ; Wen J. ; Zhang Y. W. ; Shen M. Q. ; Dunn B. ; Lu Y. F Adv. Energy Mater 2011, 23, 791.
doi: 10.1002/adma.201003658
[1] 赵立平,孟未帅,王宏宇,齐力. 二硫化钼-碳复合材料用作钠离子电容电池负极材料[J]. 物理化学学报, 2017, 33(4): 787-794.
[2] 殷金玲,刘佳,温青,王贵领,曹殿学. 磷钼酸作为低温碳燃料电池的碳间接电氧化介质[J]. 物理化学学报, 2017, 33(2): 370-376.
[3] 李道琰,张基琛,王志勇,金先波. 蜂巢状多孔明胶制备高性能超级电容器用活性炭[J]. 物理化学学报, 2017, 33(11): 2245-2252.
[4] 王永芳,左宋林. 含磷活性炭作为双电层电容器电极材料的电化学性能[J]. 物理化学学报, 2016, 32(2): 481-492.
[5] 佟莉, 徐文青, 亓昊, 周璇, 刘瑞辉, 朱廷钰. 硝酸改性活性炭上氧/氮官能团对脱汞性能的促进作用[J]. 物理化学学报, 2015, 31(3): 512-518.
[6] 杨洁扬,黄张根,韩小金,景文,曾泽泉. 孔结构对活性炭吸附水溶液中铅离子的影响[J]. 物理化学学报, 2015, 31(10): 1956-1962.
[7] 肖波, 刘守清. 可见光辐射下活性炭-铁酸镍杂化催化剂光催化氧化氨氮[J]. 物理化学学报, 2014, 30(9): 1697-1705.
[8] 孙现众, 黄博, 张熊, 张大成, 张海涛, 马衍伟. 双电层电容器电化学阻抗谱的实验研究[J]. 物理化学学报, 2014, 30(11): 2071-2076.
[9] 黄博, 孙现众, 张熊, 张大成, 马衍伟. 活性炭基软包装超级电容器用有机电解液[J]. 物理化学学报, 2013, 29(09): 1998-2004.
[10] 金炜阳, 程党国, 陈丰秋, 詹晓力. 修饰晶种法合成MFI型分子筛膜包覆的活性炭颗粒[J]. 物理化学学报, 2013, 29(01): 139-143.
[11] 仲皓想, 赵春宝, 骆浩, 张灵志. 一种新型有机硅离子液体电解液在超级电容中的应用[J]. 物理化学学报, 2012, 28(11): 2641-2647.
[12] 平丽娜, 郑嘉明, 时志强, 王成扬. 以预锂化中间相碳微球为负极的锂离子电容器的电化学性能[J]. 物理化学学报, 2012, 28(07): 1733-1738.
[13] 汤儆, 曾峤, 陈振东, 黄向前. 电化学间接测量法研究谷胱甘肽在多壁碳纳米管和活性炭上的吸附[J]. 物理化学学报, 2012, 28(05): 1269-1274.
[14] 赵磊, 许响生, 张凯超, 严新焕. 高效组合型Pt-Fe/C 催化剂用于肉桂醛选择性加氢反应[J]. 物理化学学报, 2012, 28(04): 923-927.
[15] 孙现众, 张熊, 张大成, 马衍伟. 活性炭基Li2SO4水系电解液超级电容器[J]. 物理化学学报, 2012, 28(02): 367-372.