Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2454-2462    DOI: 10.3866/PKU.WHXB201706092
研究论文     
利用强度调制光电流/光电压谱研究碳点/KOH电解液界面的动力学行为
桑丽霞, 蔺佳, 葛昊, 雷蕾
北京工业大学环境与能源工程学院, 传热强化与过程节能教育部重点实验室及传热与能源利用北京市重点实验室, 北京 100124
Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS
SANG Li-Xia, LIN Jia, GE Hao, LEI Lei
Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
 全文: PDF(1268 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

通过强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)技术研究在光电分解水制氢体系中碳点光阳极与KOH电解液界面的动力学行为。结果表明,光强在30-90 mW·cm-2范围内,界面的电子传输时间(τd)、电子寿命(τn)、电子扩散系数(Dn)、电子扩散长度(Ln)均没有变化;当光强增加到110和130 mW·cm-2时,τdτn延长,而Dn减小。实验表明,不同于TiO2/电解液等界面,碳点光电极/电解液界面中碳点电极存在的缺陷少,因此电子主要以无陷阱限制扩散方式传输为主。且在30-130 mW·cm-2的光强范围内,与τdτn相关的载流子收集效率(ηcc)相近。

关键词: 碳点光电制氢界面动力学IMPSIMVS    
Abstract:

The dynamic behaviors at the interface of carbon dots and KOH electrolyte were studied using intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) in the photoelectrochemical hydrogen production from water splitting. The results show that the kinetic parameters like electron transport time (τd), electron diffusion coefficient (Dn), electron lifetime (τn), and electron diffusion length (Ln) remain unchanged in the light intensity range of 30-90 mW·cm-2. When the light intensity increases to 110 and 130 mW·cm-2, τd and τn increase, while Dn decreases. It is indicated that the photogenerated electrons are mainly transported in the trap-free limited diffusion mode at the electrode/electrolyte interface due to the presence of few defects in carbon dots, which is different from the mode of transport at the semiconductor TiO2/electrolyte interface. Moreover, the photocarrier collection efficiencies (ηcc) associated with the electron transport time and the electron lifetime are similar for light intensity of 30-130 mW·cm-2.

Key words: Carbon dots    Photoelectrochemical hydrogen production    Interface dynamic    IMPS    IMVS
收稿日期: 2017-05-08 出版日期: 2017-06-09
中图分类号:  O649  
基金资助:

国家自然科学基金(51376013)资助项目

通讯作者: 桑丽霞,Email:sanglixia@bjut.edu.cn;Tel:+86-10-67396663-8317.     E-mail: sanglixia@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
桑丽霞
蔺佳
葛昊
雷蕾

引用本文:

桑丽霞, 蔺佳, 葛昊, 雷蕾. 利用强度调制光电流/光电压谱研究碳点/KOH电解液界面的动力学行为[J]. 物理化学学报, 2017, 33(12): 2454-2462.

SANG Li-Xia, LIN Jia, GE Hao, LEI Lei. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS. Acta Phys. -Chim. Sin., 2017, 33(12): 2454-2462.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706092        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2454

(1) Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photon. 2012, 6, 511. doi: 10.1038/NPHOTON.2012.175
(2) Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Acc. Chem. Res. 2009, 42, 1966. doi: 10.1021/ar9002398
(3) Shen, C.; Chua, C. S.; Lim, Y. F.; Wang, Q. ChemElectroChem 2016, 24, 1471. doi: 10.1002/celc.201600273
(4) Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W. J. Am. Chem. Soc. 2004, 126, 12736. doi: 10.1021/ja040082h
(5) Zhang, Z. Y.; Sang, L. X.; Sun, B.; Zhang, X. M.; Ma, C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935. [张知宇, 桑丽霞, 孙 彪, 张晓敏, 马重芳, 物理化学学报, 2010, 26, 2935.]doi: 10.3866/PKU.WHXB201006001
(6) Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R.. J. Mater. Chem. A 2014, 2, 3344. doi: 10.1039/c3ta14108j
(7) Leng, W. H.; Barnes, P. R.; Juozapavicius, M.; Regan, B. C.; Durrant, J. R. J. Phys. Chem. Lett. 2010, 1, 967. doi: 10.1021/jz100051q
(8) Sang, L. X.; Zhang, Y. D.; Wang, J.; Zhao, Y. X.; Chen, Y. T. Phys. Chem. Chem. Phys. 2016, 18, 15427. doi: 10.1039/c6cp01990k
(9) Bian, J. C.; Hang, C.; Wang, L. Y.; Hung, T. F.; Daoud, W. A.; Zhang, R. Q. ACS Appl. Mater. Interfaces 2014, 6, 4883. doi: 10.1021/am4059183
(10) Wang, F.; Zhang, Y. L.; Liu, Y.; Wang, X. F.; Shen, M. R.; Lee, S. T.; Kang, Z. H. J. Mater. Chem. A 2013, 5, 1831. doi: 10.1039/c3nr33985h
(11) Yang, P. J.; Zhao, J. H.; Wang, J.; Cui, H. J.; Li, L.; Zhu, Z. P. RSC Adv. 2015, 5, 21332. doi: 10.1039/c5ra01924a
(12) Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. P. J. Am. Chem. Soc. 2011, 133, 4754. doi: 10.1021/ja200804h
(13) Dino, K.; David, S. E.; Hen, D.; Avner, R. Phys. Chem. Chem. Phys. 2016, 18, 23438. doi: 10.1039/c6cp04683e
(14) Yin, F.; Lin, Y.; Lin, R. F.; Xiao, X. R. Acta Phys. -Chim. Sin. 2002, 18, 21. [尹 峰, 林 原, 林瑞峰, 肖绪瑞. 物理化学学报, 2002, 18, 21.] doi: 10.3866/PKU.WHXB20020105
(15) Zhang, C. N.; Huang, Y.; Chen, S. H.; Tian, H. J.; Mo, L.; Hu, L. H.; Huo, Z. P.; Kong, F. T.; Ma, Y. W.; Dai, S.Y. J. Phys. Chem. C 2012, 116, 19807. doi: 10.1021/jp304911u
(16) Bertoluzzi, L.; Lopezvaro, P.; Tejada, J. A. J.; Bisquert, J. J. Mater. Chem. A 2016, 4, 2873. doi: 10.1039/c5ta03210e
(17) Yu, X.; Liu, R.; Zhang, G.; Cao, H. Nanotechnology 2013, 24, 335401. doi: 10.1088/0597-4484/24/33/335401
(18) Sun, Y J. Preparation and Photoelectrochemical Properties ofModified TiO2 Thin Films. Master Dissertation, FudanUniversity, Shanghai, 2012. [孙钰珺. 改性 TiO2 薄膜的制备及其光电化学性能研究[D]. 上海: 复旦大学, 2012.]
(19) Bao, L.; Zhang, Z. L.; Tian, Z.Q.; Peng, D. W. Adv. Mater. 2011, 23, 5801. doi: 10.1002/adma.201102866
(20) Hu, S.; Tian, R.; Wu, L.; Zhao, Q.; Yang, J.; Liu, J.; Cao, S. Chem. Asian. J. 2013, 8, 1035. doi: 10.1002/asia.201300076
(21) Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Bai, Y. Nano Res. 2015, 8, 355. doi: 10.1007/s12274-014-0644-3
(22) Bisquert, J.; Belmonte, G. G.; Santiago, F. F. J. Solid State Electrochem. 1999, 3, 337. doi: 10.1007/s100080050164
(23) Zhang, J. B.; Lin, Y.; Lin R. F. Sinence in China (Series B). 2000, 20, 263. [张敬波, 林 原, 林瑞峰. 中国科学化学, 2000, 20, 263.] doi: 10.3221/j.issn:1006-9240.2000.03.010
(24) Vanmaekelbergh, D.; Jongh, P. E. D. Phys. Rev. B 2000, 61, 4699. doi: 10.1103/physRevB.61.4699
(25) Hsiao, P. T.; Tung, Y. L.; Teng, H. J. Phys. Chem. C 2010, 114, 6762. doi: 10.1021/jp1006457
(26) Shangguan, P. P.; Tong, S. P.; Li, H. L.; Leng, W. H. Acta Phys. -Chim. Sin. 2013, 29, 1954. [上官鹏鹏, 童少平, 李海丽, 冷文华. 物理化学学报, 2013, 29, 1954.]doi: 10.3866/PKU.WHXB201306261
(27) Peter, L. M.; Wijayantha, K. G. U.; Tahir, A. A. FaradayDiscuss. 2012, 155, 309. doi: 10.1039/C1FD00079A
(28) Lewerenz, H. J.; Peter, L. RSC Energy and Environment Series; Springer: New York, 2013; pp 19–47.
(29) Jongh, P. E. D.; Vanmaekelbergh, D. Phys. Rev. Lett. 1996, 77, 3427. doi: 10.1103/PhysRevLett.77.3427
(30) Miyashita, M.; Sunahara, K. J.; Nishikawa, T.; Uemura, Y.; Koumura, N.; Hara, K.; Mori, A.; Abe, T.; Suzuki, E.; Mori, S. J. Am. Chem. Soc. 2008, 130, 17874. doi: 10.1021/ja803534u
(31) Dloczik, L.; Lleperuma, O.; Lauermann, I.; Peter, L. M.; Ponomarev, E. A.; Redmond, G.; Shaw, N. J.; Uhlendorf, I. J. Phys.Chem. B 1997, 101, 10281. doi: 10.1021/jp972466i
(32) Franco, G.; Gehring, J.; Peter, L. M.; Ponomarev, E. A.; Uhlendorf, I. J. Phys. Chem. B 1999, 103, 692. doi: 10.1021/jp984060r
(33) Kem, R.; Sastrawan, R.; Ferber, J.; Luther, R. S. Electrochim. Acta 2002, 47, 4213. doi: 10.1016/S0013-4686(02)00444-9
(34) Peter, L. M.; Wijayantha, K. G. U. Electrochim. Acta 2000, 45, 4543. doi: 10.1016/S0013-4686(00)00605-8
(35) Guillen, E.; Peter, L. M.; Anta, J. A. J. Phys. Chem. C 2016, 115, 22622. doi: 10.1021/jp206698t
(36) Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141. doi: 10.1021/jp9714126
(37) Zheng, J. W.; Mo, L. E.; Chen, W.C.; Jiang, L.; Ding, Y. C.; Ding, Y.; Li, Z. Q.; Hu, L. H.; Dai, S. Y. Electrochim. Acta 2017, 232, 38. doi: 10.1016/j.electacta.2017.02.121
(38) Yu, X. Y.; Liao, J. Y.; Qiu, K. Q.; Kuang, D. B.; Su, C. Y. ACS Nano 2011, 5, 9494. doi: 10.1021/nnn203375g
(39) Desario, P. A.; Pietron, J. J.; Taffa, D. H.; Compton, R.; Schuenemann, S.; Marschall, R.; Brintlinger, T. H.; Stroud, R.M.; Wark, M.; Owrutsky, J. C.; Rolison, D. R. J. Phys. Chem. C 2015, 119, 17529. doi: 10.1021/acs.jpcc.5b04013
(40) Liang, L. Y.; Dai, S. Y.; Fang, X. Q.; Hu, L. H. Acta Phys. Sin. 2008, 57, 1190. [梁林云, 戴松元, 方霞琴,胡林华.物理学报, 2008, 57, 1190.]doi: 10.3321/j.issn:1000-3290.2008.03.111

[1] 刘金龙, 林亮珍, 胡锦凤, 白明洁, 陈良贤, 魏俊俊, 黑立富, 李成明. 微波法制备纳米碳点反应机制与发光机理[J]. 物理化学学报, 2018, 34(1): 92-98.
[2] 冯昌, 邓晓燕, 倪晓晓, 李卫兵. 碳点修饰多孔ZnO纳米棒增强光催化性能[J]. 物理化学学报, 2015, 31(12): 2349-2357.