Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2454-2462    DOI: 10.3866/PKU.WHXB201706092
论文     
利用强度调制光电流/光电压谱研究碳点/KOH电解液界面的动力学行为
桑丽霞*(),蔺佳,葛昊,雷蕾
Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS
Li-Xia SANG*(),Jia LIN,Hao GE,Lei LEI
 全文: PDF(1268 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

通过强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)技术研究在光电分解水制氢体系中碳点光阳极与KOH电解液界面的动力学行为。结果表明,光强在30-90 mW·cm-2范围内,界面的电子传输时间(τd)、电子寿命(τn)、电子扩散系数(Dn)、电子扩散长度(Ln)均没有变化;当光强增加到110和130 mW·cm-2时,τdτn延长,而Dn减小。实验表明,不同于TiO2/电解液等界面,碳点光电极/电解液界面中碳点电极存在的缺陷少,因此电子主要以无陷阱限制扩散方式传输为主。且在30-130 mW·cm-2的光强范围内,与τdτn相关的载流子收集效率(ηcc)相近。

关键词: 碳点光电制氢界面动力学IMPSIMVS    
Abstract:

The dynamic behaviors at the interface of carbon dots and KOH electrolyte were studied using intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) in the photoelectrochemical hydrogen production from water splitting. The results show that the kinetic parameters like electron transport time (τd), electron diffusion coefficient (Dn), electron lifetime (τn), and electron diffusion length (Ln) remain unchanged in the light intensity range of 30-90 mW·cm-2. When the light intensity increases to 110 and 130 mW·cm-2, τd and τn increase, while Dn decreases. It is indicated that the photogenerated electrons are mainly transported in the trap-free limited diffusion mode at the electrode/electrolyte interface due to the presence of few defects in carbon dots, which is different from the mode of transport at the semiconductor TiO2/electrolyte interface. Moreover, the photocarrier collection efficiencies (ηcc) associated with the electron transport time and the electron lifetime are similar for light intensity of 30-130 mW·cm-2.

Key words: Carbon dots    Photoelectrochemical hydrogen production    Interface dynamic    IMPS    IMVS
收稿日期: 2017-05-08 出版日期: 2017-06-09
中图分类号:  O649  
基金资助: 国家自然科学基金(51376013)
通讯作者: 桑丽霞     E-mail: sanglixia@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
桑丽霞
蔺佳
葛昊
雷蕾

引用本文:

桑丽霞,蔺佳,葛昊,雷蕾. 利用强度调制光电流/光电压谱研究碳点/KOH电解液界面的动力学行为[J]. 物理化学学报, 2017, 33(12): 2454-2462, 10.3866/PKU.WHXB201706092

Li-Xia SANG,Jia LIN,Hao GE,Lei LEI. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS. Acta Phys. -Chim. Sin., 2017, 33(12): 2454-2462, 10.3866/PKU.WHXB201706092.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706092        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2454

图1  (a)采用一步碱助电化学法制备碳点的TEM图像,此时制备条件为碱性溶液环境中,氧化时间为5 h、氧化电压为40 V;(b)碳点的尺寸分布柱状图;(c)碳点在不同激发波长下的上转换荧光光谱(激发波长为360、380、400、420、440、460 nm);(d)碳点的红外光谱
图2  碳点电极在1 mol·L-1 KOH中的IMPS谱
图3  在不同光强下碳点电极在1 mol·L-1KOH中的IMPS谱
Light intensity/(mW·cm-2)f(min, IMPS)/kHzτd/μs1011Dn/(cm2·s-1)
3010.015.93.0
5010.015.93.0
7010.015.93.0
9010.015.93.0
1108.917.92.7
1308.917.92.7
表1  不同光强下碳点/KOH溶液界面的电子传输时间和电子扩散系数
图4  碳点电极在1 mol·L-1 KOH中的IMVS谱图
图5  在不同光强下碳点电极在1 mol·L-1KOH中的IMVS谱
Light intensity/(mW·cm-2)f(min, IMVS)/kHzτn/μsLn/nmηcc/%
3025.363.40.43674.92
5025.363.40.43674.92
7025.363.40.43674.92
9025.363.40.43674.92
11022.471.10.43874.82
13022.471.10.43874.82
表2  不同光强下碳点/KOH溶液界面的电子寿命、电子扩散长度及载流子收集效率
1 Tachibana Y. ; Vayssieres L. ; Durrant J. R. Nat. Photon. 2012, 6, 511.
doi: 10.1038/NPHOTON.2012.175
2 Youngblood W. J. ; Lee S. H. A. ; Maeda K. ; Mallouk T. E. Acc. Chem. Res. 2009, 42, 1966.
doi: 10.1021/ar9002398
3 Shen C. ; Chua C. S. ; Lim Y. F. ; Wang Q. ChemElectroChem 2016, 24, 1471.
doi: 10.1002/celc.201600273
4 Xu X. ; Ray R. ; Gu Y. ; Ploehn H.J. ; Gearheart L. ; Raker K. ; Scrivens W. J. Am. Chem. Soc. 2004, 126, 12736.
doi: 10.1021/ja040082h
5 Zhang Z. Y. ; Sang L. X. ; Sun B. ; Zhang X. M. ; Ma C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935.
doi: 10.3866/PKU.WHXB201006001
张知宇; 桑丽霞; 孙彪; 张晓敏; 马重芳. 物理化学学报, 2010, 26, 2935.
doi: 10.3866/PKU.WHXB201006001
6 Yu H. J. ; Zhao Y. F. ; Zhou C. ; Shang L. ; Peng Y. ; Cao Y. H. ; Wu L. Z. ; Tung C. H. ; Zhang T. R. J. Mater. Chem. A 2014, 2, 3344.
doi: 10.1039/c3ta14108j
7 Leng W. H. ; Barnes P. R. ; Juozapavicius M. ; Regan B. C. ; Durrant J. R. J. Phys. Chem. Lett. 2010, 1, 967.
doi: 10.1021/jz100051q
8 Sang L. X. ; Zhang Y. D. ; Wang J. ; Zhao Y. X. ; Chen Y. T. Phys. Chem. Chem. Phys. 2016, 18, 15427.
doi: 10.1039/c6cp01990k
9 Bian J. C. ; Hang C. ; Wang L. Y. ; Hung T. F. ; Daoud W. A. ; Zhang R. Q. ACS Appl. Mater. Interfaces 2014, 6, 4883.
doi: 10.1021/am4059183
10 Wang F. ; Zhang Y. L. ; Liu Y. ; Wang X. F. ; Shen M. R. ; Lee S. T. ; Kang Z. H. J. Mater. Chem. A 2013, 5, 1831.
doi: 10.1039/c3nr33985h
11 Yang P. J. ; Zhao J. H. ; Wang J. ; Cui H. J. ; Li L. ; Zhu Z. P. RSC Adv. 2015, 5, 21332.
doi: 10.1039/c5ra01924a
12 Cao L. ; Sahu S. ; Anilkumar P. ; Bunker C. E. ; Xu J. ; Fernando K. A. S. ; Wang P. ; Guliants E. A. ; Tackett K. N. ; Sun Y. P. J. Am. Chem. Soc. 2011, 133, 4754.
doi: 10.1021/ja200804h
13 Dino K. ; David S. E. ; Hen D. ; Avner R. Phys. Chem. Chem. Phys. 2016, 18, 23438.
doi: 10.1039/c6cp04683e
14 Yin F. ; Lin Y. ; Lin R. F. ; Xiao X. R. Acta Phys. -Chim. Sin. 2002, 18, 21.
doi: 10.3866/PKU.WHXB20020105
尹峰; 林原; 林瑞峰; 肖绪瑞. 物理化学学报, 2002, 18, 21.
doi: 10.3866/PKU.WHXB20020105
15 Zhang C. N. ; Huang Y. ; Chen S. H. ; Tian H. J. ; Mo L. ; Hu L. H. ; Huo Z. P. ; Kong F. T. ; Ma Y. W. ; Dai S.Y. J. Phys. Chem. C 2012, 116, 19807.
doi: 10.1021/jp304911u
16 Bertoluzzi L. ; Lopezvaro P. ; Tejada J. A. J. ; Bisquert J. J. Mater. Chem. A 2016, 4, 2873.
doi: 10.1039/c5ta03210e
17 Yu X. ; Liu R. ; Zhang G. ; Cao H. Nanotechnology 2013, 24, 335401.
doi: 10.1088/0597-4484/24/33/335401
18 Sun, Y J. Preparation and Photoelectrochemical Properties of Modified TiO2 Thin Films. Master Dissertation, Fudan University, Shanghai, 2012.
孙钰珺.改性TiO2薄膜的制备及其光电化学性能研究[D].上海:复旦大学, 2012.
19 Bao L. ; Zhang Z. L. ; Tian Z.Q. ; Peng D. W. Adv. Mater. 2011, 23, 5801.
doi: 10.1002/adma.201102866
20 Hu S. ; Tian R. ; Wu L. ; Zhao Q. ; Yang J. ; Liu J. Cao S. Chem. Asian. J. 2013, 8, 1035.
doi: 10.1002/asia.201300076
21 Zhu S. J. ; Song Y. B. ; Zhao X. H. ; Bai Y. Nano Res. 2015, 8, 355.
doi: 10.1007/s12274-014-0644-3
22 Bisquert J. ; Belmonte G. G. ; Santiago F. F. J. Solid State Electrochem. 1999, 3, 337.
doi: 10.1007/s100080050164
23 Zhang J. B. ; Lin Y. ; Lin R. F. Sinence in China (Series B). 2000, 20, 263.
doi: 10.3221/j.issn:1006-9240.2000.03.010
张敬波; 林原; 林瑞峰. 中国科学化学, 2000, 20, 263.
doi: 10.3221/j.issn:1006-9240.2000.03.010
24 Vanmaekelbergh D. ; Jongh P. E. D. Phys. Rev. B 2000, 61, 4699.
doi: 10.1103/physRevB.61.4699
25 Hsiao P. T. ; Tung Y. L. ; Teng H. J. Phys. Chem. C 2010, 114, 6762.
doi: 10.1021/jp1006457
26 Shangguan P. P. ; Tong S. P. ; Li H. L. ; Leng W. H. Acta Phys. -Chim. Sin. 2013, 29, 1954.
doi: 10.3866/PKU.WHXB201306261
上官鹏鹏; 童少平; 李海丽; 冷文华. 物理化学学报, 2013, 29, 1954.
doi: 10.3866/PKU.WHXB201306261
27 Peter L. M. ; Wijayantha K. G. U. ; Tahir A. A. Faraday Discuss. 2012, 155, 309.
doi: 10.1039/C1FD00079A
28 Lewerenz H. J. ; Peter L. RSC Energy and Environment Series; Springer: New York 2013.
29 Jongh P. E. D. ; Vanmaekelbergh D. Phys. Rev. Lett. 1996, 77, 3427.
doi: 10.1103/PhysRevLett.77.3427
30 Miyashita M. ; Sunahara K. J. ; Nishikawa T. ; Uemura Y. ; Koumura N. ; Hara K. ; Mori A. ; Abe T. ; Suzuki E. ; Mori S. J. Am. Chem. Soc. 2008, 130, 17874.
doi: 10.1021/ja803534u
31 Dloczik L. ; Lleperuma O. ; Lauermann I. ; Peter L. M. ; Ponomarev E. A. ; Redmond G. ; Shaw N. J. ; Uhlendorf I. J. Phys.Chem. B 1997, 101, 10281.
doi: 10.1021/jp972466i
32 Franco G. ; Gehring J. ; Peter L. M. ; Ponomarev E. A. ; Uhlendorf I. J. Phys. Chem. B 1999, 103, 692.
doi: 10.1021/jp984060r
33 Kem R. ; Sastrawan R. ; Ferber J. ; Luther R. S. Electrochim. Acta 2002, 47, 4213.
doi: 10.1016/S0013-4686(02)00444-9
34 Peter L. M. ; Wijayantha K. G. U. Electrochim. Acta 2000, 45, 4543.
doi: 10.1016/S0013-4686(00)00605-8
35 Guillen E. ; Peter L. M. ; Anta J. A. J. Phys. Chem. C 2016, 115, 22622.
doi: 10.1021/jp206698t
36 Schlichth rl G. ; Huang S. Y. ; Sprague J. ; Frank A. J. J. Phys. Chem. B 1997, 101, 8141.
doi: 10.1021/jp9714126
37 Zheng J. W. ; Mo L. E. ; Chen W.C. ; Jiang L. ; Ding Y. C. ; Ding Y. ; Li Z. Q. ; Hu L. H. ; Dai S. Y. Electrochim. Acta 2017, 232, 38.
doi: 10.1016/j.electacta.2017.02.121
38 Yu X. Y. ; Liao J. Y. ; Qiu K. Q. ; Kuang D. B. ; Su C. Y. ACS Nano 2011, 5, 9494.
doi: 10.1021/nnn203375g
39 Desario P. A. ; Pietron J. J. ; Taffa D. H. ; Compton R. ; Schuenemann S. ; Marschall R. ; Brintlinger T. H. ; Stroud R. M. ; Wark M. ; Owrutsky J. C. ; Rolison D. R. J. Phys. Chem. C 2015, 119, 17529.
doi: 10.1021/acs.jpcc.5b04013
40 Liang L. Y. ; Dai S. Y. ; Fang X. Q. ; Hu L. H. Acta Phys. Sin. 2008, 57, 1190.
doi: 10.3321/j.issn:1000-3290.2008.03.111
梁林云; 戴松元; 方霞琴; 胡林华. 物理学报, 2008, 57, 1190.
doi: 10.3321/j.issn:1000-3290.2008.03.111
[1] 刘金龙,林亮珍,胡锦凤,白明洁,陈良贤,魏俊俊,黑立富,李成明. 微波法制备纳米碳点反应机制与发光机理[J]. 物理化学学报, 2018, 34(1): 92-98.
[2] 冯昌,邓晓燕,倪晓晓,李卫兵. 碳点修饰多孔ZnO纳米棒增强光催化性能[J]. 物理化学学报, 2015, 31(12): 2349-2357.