Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2550-2558    DOI: 10.3866/PKU.WHXB201706071
论文     
固相聚合合成聚噻吩衍生物及烷基链对固相聚合的影响
裴童,彭凯,蔡心怡,袁良杰*(),夏江滨*()
Synthesis of Poly(bis-3, 4-ethylenedioxythiophene methine)s with Side-Chain Comprising Electro-Optical Moieties and Alkyl Chain Effect in Solid State Polymerization
Tong PEI,Kai PENG,Xin-Yi CAI,Liang-Jie YUAN*(),Jiang-Bin XIA*()
 全文: PDF(5348 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

本文以EDOT-CH(R)-EDOT为基本模型,向侧链引入噻吩、咔唑、芴等几种典型的光电基团,并通过固相/熔融聚合得到相应的聚合物。详细探讨了聚合物的相关性质和几种典型单体的晶体结构,同时发现烷基链的引入降低了分子间的作用力,使得单体的初始聚合温度(Tonset)降低。

关键词: 聚噻吩衍生物固相/熔融聚合烷基链影响    
Abstract:

New poly(bis-3, 4-ethylenedioxythiophene methine)s derivatives with typical electro-optical moieties of thiophene, carbazole and fluorene as the side chains are obtained by facile solid state polymerization (SSP) or melt state polymerization (MSP). Detail characterizations of these polymers are carried out and some key monomers' crystals are obtained for structures analysis. It is found that existence of alkyl chains decrease monomers onset temperatures for SSP (Tonset) due to the weakening of the intermolecular interaction in crystals.

Key words: Poly (bis-3, 4-ethylenedioxythiophene methine) s derivatives    Solid and melt state polymerization    Alkyl chain effect
收稿日期: 2017-05-08 出版日期: 2017-06-09
中图分类号:  O646  
基金资助: 国家自然科学基金(21371138);湖北省创新团队科研基金(2014CFA007);中央高校基本科研业务费专项资金(2042015kf0180)
通讯作者: 袁良杰,夏江滨     E-mail: jbxia@whu.edu.cn;ljyuan@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
裴童
彭凯
蔡心怡
袁良杰
夏江滨

引用本文:

裴童,彭凯,蔡心怡,袁良杰,夏江滨. 固相聚合合成聚噻吩衍生物及烷基链对固相聚合的影响[J]. 物理化学学报, 2017, 33(12): 2550-2558, 10.3866/PKU.WHXB201706071

Tong PEI,Kai PENG,Xin-Yi CAI,Liang-Jie YUAN,Jiang-Bin XIA. Synthesis of Poly(bis-3, 4-ethylenedioxythiophene methine)s with Side-Chain Comprising Electro-Optical Moieties and Alkyl Chain Effect in Solid State Polymerization. Acta Phys. -Chim. Sin., 2017, 33(12): 2550-2558, 10.3866/PKU.WHXB201706071.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706071        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2550

Fig Scheme 1  Synthesis of the monomers, corresponding polymers and digital imagines of SSP process.
Fig 1  FTIR spectra for these polymers.
Fig 2  XRD spectra of monomers and corresponding polymers.
Fig 3  Absorbance spectra of these polymers obtained by SSP and dedoped polymers by hydrazine treatment in CH2Cl2 solution. (a) P(Th-EDOT), (b) P(BuTh-EDOT), (c) P(Carb-EDOT), (d) P(Flu-EDOT).
Conversion for 24 h (temperature)Abs. λmax/nm solutionAbs.λedge/nm solutionEgapaHOMOb (eV)LUMOc (eV)
P(Th-EDOT)> 95 %, 110 ℃340, 357, 5757221.725.293.57
P(BuTh-EDOT)> 95 %, 130 ℃355, 389, 411, 4606661.864.933.07
P(Carb-EDOT)> 95 %, 150 ℃340, 612,7301.704.632.93
P(Flu-EDOT)> 95 %, 100 ℃342, 6407631.634.572.94
Table 1  Optical and electrochemical data of the obtained poly(bis-3, 4-ethylenedioxythiophene methine)s.
Fig 4  CVs of polymers films in acetonitrile solution containing 0.1 mol·L?1 Bu4NClO4 taken at various scan rates.
Fig 5  Intramolecular atoms distances and different angles in the monomers of I2-Th-EDOT and I2-Flu-EDOT.
Fig 6  Single-crystal X-ray structure of compound I2-Th-EDOT. (a) view of I/I distances (b) view of corresponding C/C contact distances (c) crystal packing viewed along the a-axis, proposed the first polymerization pathway and involved I/I and C/C contact distances. (d) proposed the second polymerization pathway. The numbers indicate the corresponding distances in Angstrom. I, purple; S, yellow and C, gray.
Fig 7  Single-crystal X-ray structure of compound I2-Flu-EDOT. (a) view of I/I distances; (b) view of corresponding C/C contact distances; (c-d) crystal packing viewed along the a-axis, proposed the first and second polymerization pathways and involved I/I and C/C contact distances. The numbers indicate the corresponding distances in Angstrom. I, purple; S, yellow and C, gray.
Distance/nm Angle/(°)
I1/I2 S1/S2 bridge length (C―CH(R)―C) ∠C―CH(R)―C ∠S1CH(R)S2 ∠I1CH(R)I2
I2-Th-EDOT 0.9229 0.3973 0.2526 113.50 88.91 103.12
I2-Flu-EDOT 0.9358 0.3979 0.2534 113.27 88.88 103.54
Table 2  Intramolecular atoms distances and angles.
Molecules parametersI2-Th-EDOTI2-Flu-EDOT
shortest I/I distance/nm0.4397a0.5391a
2nd shortest I/I distance/nm0.44250.5650
3rd shortest I/I distance/nm0.61910.7893
C-C contact shortest distance/nm0.49100.5814
C-C contact 2nd shortest distance/nm0.52440.7932
longer than 2rw of iodineb9.9%34.8
Tonset of SSP (℃)6264
Table 3  Selected I/I and C-C contact distances (nm) for the Reported Crystals.
Fig 8  Linear dependence of effective I/I distance with Tonset of SSP and the effect of alkyl chains. Data of those non-alkyl chain samples derived from Ref.19.
PolymersReaction conditionYield/%Mn/(g?mol-1) aPDIDPb
80 ℃ 3 d> 95 %10922.732
P(Flu-EDOT)90 ℃ 3 d> 95 %14561.323
150 ℃ 3 d> 95 %2101c1.884
P(Carb-C16-EDOT)100 ℃ 3 d> 95 %14971.692
150 ℃ 3 d> 95 %190591.0727
Table 4  Effect of reaction condition on the molecular weight and PDI.
1 Skotheim, T. A. ; Elsenbaumer, R. L. ; Reynolds, J. R. Hand Book of Conducting Polymers; Marcel Dekker Inc. , New York, 1998.
2 Hadziioannou, G. ; Hutten, P. F. v. Semiconducting Polymers, 2nd ed. ; Wiley-VCH; Weinheim, 2007.
3 Meng H. ; Perepichka D. F. ; Bendikov M. ; Wudl F. ; Pan G. Z. ; Yu W. ; Dong W. ; Brown S. J.Am. Chem. Soc 2003, 125, 15151.
doi: 10.1021/ja037115y
4 Spencer H. J. ; Berridge R. ; Crouch D. J. ; Wright S. P. ; Giles M. ; McCulloch I. ; Coles S. J. ; Hursthouse M. B. ; Skabara P. J. J.Mater. Chem 2003, 13, 2075.
doi: 10.1039/B307575N
5 Patra A. ; Wijsboom Y. H. ; Zade S. S. ; Li M. ; Sheynin Y. ; Leitus G. ; Bendikov M. J.Am. Chem. Soc 2008, 130, 6734.
doi: 10.1021/ja8018675
6 Lepeltier M. ; Hiltz J. ; Lockwood T. ; Bélanger-Gariépy F. ; Perepichka D. F. J.Mater. Chem 2009, 19, 5167.
doi: 10.1039/B822997J
7 Patra A. ; Wijsboom Y. H. ; Leitus G. ; Bendikov M. Chem. Mater 2011, 23, 896.
doi: 10.1021/cm102395v
8 Chen S. ; Xu J. ; Lu B. ; Duan X. ; Kong F. Adv. Mater. Res 2011, 239, 924.
doi: 10.4028/www.scientific.net/AMR.239-242.924
9 Gulprasertrat N. ; Chapromma J. ; Aree T. ; Sritana-anant Y. J.Appl. Polym. Sci 2015, 132, 42233.
doi: 10.1002/app.42233
10 Wagner P. ; Jolley K. W. ; Officer D. L.Aust. J.Chem 2011, 64, 335.
doi: 10.1071/CH10413
11 Yin Y. ; Li Z. ; Jin J. ; Tusy C. ; Xia J. Synth. Met 2013, 175, 97.
doi: 10.1016/j.synthmet.2013.05.001
12 Tusy C. ; Jiang K. ; Xia J. Polym. Chem 2015, 4, 1014.
doi: 10.1039/C4PY01070A
13 Koh J. K. ; Kim J. ; Kim B. ; Kim J. H. ; Kim E. Adv. Mater 2011, 23, 1641.
doi: 10.1002/adma.201004715
14 Chen L. ; Jin J. ; Shu X. ; Xia J. J.Power Sources 2014, 248, 1234.
doi: 10.1016/j.jpowsour.2013.09.139
15 Yin X. ; Wu F. ; Fu N. ; Han J. ; Chen D. ; Xu P. ; He M. ; Lin Y. ACS Appl. Mater. Inter 2013, 5, 8423.
doi: 10.1021/am401719e
16 Papaspyrides, C. D. ; Vouyiouka, S. N. Solid State Polymerization, John Wiley & Sons, Inc. , 2009.
17 Tusy C. ; Huang L. ; Jin J. ; Xia J. RSC Adv 2014, 4, 8011.
doi: 10.1039/C3RA45014G
18 Tusy C. ; Peng K. ; Huang L. ; Xia J. RSC Adv 2015, 5, 16292.
doi: 10.1039/C4RA14915G
19 Peng K. ; Pei T. ; Li Z. ; Huang L. ; Xia J. RSC Adv 2015, 5, 103841.
doi: 10.1039/C5RA21122K
20 Barres A. L. ; Allain M. ; Frere P. ; Batail P. Isr. J.Chem 2014, 54, 689.
doi: 10.1002/ijch.201400068
21 Jenekhe S. A. Nature 1986, 322, 345.
doi: 10.1038/322345a0
22 Benincori T. ; Rizzo S. ; Sannicolo F. ; Schiavon G. ; Zecchin S. ; Zotti G. Macromolecules 2003, 36, 5114.
doi: 10.1021/ma025919c
23 Chen W. C. ; Liu C. L. ; Yen C. T. ; Tsai F. C. ; Tonzola C. J. ; Olson N. ; Jenekhe S. A. Macromolecules 2004, 37, 5959.
doi: 10.1021/ma049557f
24 Zaman M. B. ; Perepichka D. F. Chem. Commun 2005, 4187.
doi: 10.1039/B506138E
25 Umeyama T. ; Watanabe Y. ; Oodoi M. ; Evgenia D. ; Shishido T. ; Imahori H. J.Mater. Chem 2012, 22, 24394.
doi: 10.1039/C2JM33637E
26 Ahn S. ; Yabumoto K. ; Jeong Y. ; Akagi K. Polym. Chem 2014, 5, 6977.
doi: 10.1039/C4PY00849A
27 Lemau de Talance V. ; Hissler M. ; Zhang L-Z. ; Karpati T. ; Nyulaszi L. ; Caras-Quintero D. ; Baeuerle P. ; Reau R. Chem. Commun 2008, 19, 2200.
doi: 10.1039/B801335G
28 Zheng C. ; Pu S. ; Xu J. ; Luo M. ; Huang D. ; Shen L. Tetrahedron 2007, 63, 5437.
doi: 10.1016/j.tet.2007.04.049
29 Wang H. ; Chen G. ; Xu X. ; Chen H. ; Ji S. Dye Pigm 2010, 86, 238.
doi: 10.1016/j.dyepig.2010.01.010
30 Zhang D. ; Martín V. ; García-Moreno I. ; Costela A. ; Pérez-Ojeda M. E. ; Xiao Y. Phys. Chem. Chem. Phys 2011, 13, 13026.
doi: 10.1039/C1CP21038F
31 Hoffmann K. J. ; Knudsen L. ; Samuelsen E. J. ; Carlsen P. H. J. Synth. Metal 2000, 114, 161.
doi: 10.1016/S0379-6779(00)00244-7
32 Sheldrick, G. M. SHELXTL, Version 6. 14, Bruker Analytical X-ray Instruments, Inc, Madison, WI, USA, 2003.
33 Sheldrick G. M. Acta Crystallogr. Sect. A 2008, 64, 112.
doi: 10.1107/S0108767307043930
34 Kvarnstr?m C. ; Neugebauer H. ; Blomquist S. ; Ahonen H. J. ; Kankare J. ; Ivaska A. Electrochim. Acta 1999, 44, 2739.
doi: 10.1016/S0013-4686(98)00405-8
35 Louarn G. ; Kruszka J. ; Lefrant S. ; Zagorska M. ; Kulszewicz-Bayer I. ; Pron A. Synth. Met 1993, 61, 233.
doi: 10.1016/0379-6779(93)91267-6
36 Agashe M. S. ; Jose C. I. J.Chem. Soc. Faraday Trans. 2 1977, 73, 1232.
doi: 10.1039/F29797500733
37 Paul A. ; Gigueère I. ; Liu D. J.Chem. Phy 1952, 20, 136.
doi: 10.1063/1.1700155
38 Xia Y. ; MacDiarmid A. G. ; Epstein A. J.Macromolecules 1944, 27, 7212.
doi: 10.1021/ma00102a033
39 Hohnholz D. ; MacDiarmid A. G. ; Sarno D. M. ; Jones J. W. E. Chem. Commun 2001, 2444.
doi: 10.1039/B107130K
40 Benincori T. ; Rizzo S. ; Sannicoloò F. ; Schiavon G. ; Zecchin S. ; Zotti G. Macromolecules 2003, 36, 5114.
doi: 10.1021/ma025919c
41 Chen W. C. ; Liu C. L. ; Yen C. T. ; Tsai F. C. ; Tonzola C. J. ; Olson N. ; Jenekhe S. A. Macromolecules 2004, 37, 5959.
doi: 10.1021/ma049557f
42 Itoh T. ; Tachino K. ; Akira N. ; Uno T. ; Kubo M. ; Tohnai N. ; Miyata M. Macromolecules 2015, 48, 2935.
doi: 10.1021/ma502606s
43 Williams J. O. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem 1980, 77, 63.
doi: 10.1039/PC9807700063
44 Lauher J. W. ; Fowler F. W. ; Goroff N. S. Acc. Chem. Res 2008, 41, 1215.
doi: 10.1021/ar8001427
[1] 周传华, 李奇, 黄元河, 刘若庄. 聚噻吩取代效应的理论研究[J]. 物理化学学报, 1994, 10(09): 825-829.