Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2523-2531    DOI: 10.3866/PKU.WHXB201706091
论文     
介孔TiO2薄膜光波导共振传感器对苯并(a)芘的探测灵敏度
万秀美1,2,王丽1,2,龚晓庆1,2,逯丹凤1,祁志美1,*()
1 中国科学院电子学研究所,传感技术国家重点实验室,北京100190
2 中国科学院大学,北京100049
Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor
Xiu-Mei WAN1,2,Li WANG1,2,Xiao-Qing GONG1,2,Dan-Feng LU1,Zhi-Mei QI1,*()
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(3750 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

采用溶胶-凝胶分子模板法在覆金的玻璃基底上制备了厚度约为295 nm的介孔TiO2薄膜,再经表面化学修饰形成表面疏水的光波导共振(OWR)传感芯片,用于探测水中苯并(a)芘。利用Kretschmann棱镜耦合结构观测到OWR芯片在可见-近红外波段只有一个共振波谷,基于相位匹配条件确定了该共振波谷对应于二级横磁导模(TM2);进一步利用Fresnel理论并结合Bruggeman介电常数近似方程对实验测得的导模共振波长进行拟合,得出介孔TiO2薄膜的多孔度约为0.4;利用疏水介孔TiO2薄膜OWR传感芯片对水中苯并(a)芘小分子进行了原位和离位探测,结果表明离位探测灵敏度比原位探测高2倍多,其最低检测限约为100 nmol·L-1;对比实验指出OWR传感芯片的多孔结构和疏水化处理都有助于提高芯片对苯并(a)芘的探测灵敏度。研究表明这种介孔TiO2薄膜OWR传感芯片具有良好的稳定性,可重复利用。

关键词: 苯并(a)芘光波导共振传感器介孔TiO2薄膜疏水处理增敏    
Abstract:

Nanoporous TiO2 (NPT) films with a thickness of about 295 nm were prepared through the sol-gel copolymer-templating approach on a 40-nm-thick gold film sputtered on a glass substrate for optical waveguide resonance (OWR) sensing. Using the prism-coupled Kretschmann configuration, a single resonance dip was observed in the wavelength range from visible to near infrared, which was attributed to the second order transverse magnetic mode of the OWR chip based on the phase-match condition. By using a combination of Fresnel theory and Bruggeman equation to fit the measured resonance dip, the porosity of NPT films was determined to be about 0.4. After hydrophobilization of the NPT films, the OWR chips were used for both in-situ and ex-situ detections of benzo[a]pyrene (BaP) in water. The experimental results indicate that the ex-situ detection sensitivity to BaP is 2 times higher than the in-situ detection sensitivity. The lowest concentration of BaP detectable with the hydrophobilized OWR chip is ca. 100 nmol·L-1. The experimental comparisons reveal that both the nanoporous structure and hydrophobilization of the OWR chip enable to enhance the sensor's sensitivity to BaP. The work demonstrated that the NPT thin-film OWR sensing chips are stable and robust with good reusability.

Key words: Benzo (a) pyrene    Optical waveguide resonance sensor    Nanoporous TiO2 thin films    Hydrophobilization    Sensitivity enhancement
收稿日期: 2017-05-18 出版日期: 2017-06-09
中图分类号:  O647  
基金资助: 国家重点基础研究发展规划项目(973)(2015CB352100);国家自然科学基金(61377064);国家自然科学基金(61675203);中科院科研装备研制项目(YZ201508)
通讯作者: 祁志美     E-mail: zhimei-qi@mail.ie.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
万秀美
王丽
龚晓庆
逯丹凤
祁志美

引用本文:

万秀美,王丽,龚晓庆,逯丹凤,祁志美. 介孔TiO2薄膜光波导共振传感器对苯并(a)芘的探测灵敏度[J]. 物理化学学报, 2017, 33(12): 2523-2531, 10.3866/PKU.WHXB201706091

Xiu-Mei WAN,Li WANG,Xiao-Qing GONG,Dan-Feng LU,Zhi-Mei QI. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor. Acta Phys. -Chim. Sin., 2017, 33(12): 2523-2531, 10.3866/PKU.WHXB201706091.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706091        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2523

图1  实验装置示意图
图2  (a)利用不同浓度的苯并(a)芘溶液测得的紫外-可见吸收光谱; (b)吸光度与苯并(a)芘溶液浓度之间的关系
图3  (a)介孔TiO2薄膜表面形貌与(b)介孔TiO2薄膜OWR传感芯片截面形貌的SEM照片
图4  (a)疏水处理前和(b)疏水处理后介孔TiO2薄膜表面与水的静态接触角
图5  (a)空气气氛下测得的反射光强度谱与相应仿真计算得到的反射率光谱(θ = -20°); (b)覆盖层为空气和水时分别计算得到的TM1和TM2导模下有效折射率与波长的关系N(λ); (c)覆盖层为水时测得的反射光强度谱与相应仿真计算得到的反射率光谱(θ = 5°)
图6  (a)不同苯并(a)芘溶液浓度下离位测得的共振反射光谱; (b)共振波长偏移量?λR与苯并(a)芘溶液浓度的关系; (c)理论计算得到的?λR值与苯并(a)芘分子吸附量之间的关系
图7  基于疏水介孔TiO2薄膜OWR传感器(a)原位探测与(b)离位探测苯并(a)芘分子
图8  疏水介孔TiO2薄膜OWR传感芯片用于苯并(a)芘探测的稳定性与可重复利用性测试
图9  介孔TiO2薄膜在(a)疏水处理前和(b)疏水处理后用于苯并(a)芘小分子探测的实验对比
图10  疏水致密薄膜(Ta2O5)OWR传感芯片用于探测苯并(a)芘: (a)原位探测; (b)离位探测
1 Shamsuddin A. K. M. ; Sinopoli N. T. ; Hemminki K. ; Boesch R. R. ; Harris C. C. Cancer Res 1985, 45 (1), 66.
2 Miura N. ; Sasaki M. ; Gobi K. V. ; Kataoka C. ; Shoyama Y. Biosens. Bioelectron 2003, 18 (7), 953.
doi: 10.1016/S0956-5663(02)00242-7
3 Jin J. ; Li Y. ; Zhang Z. ; Su F. ; Qi P. ; Lu X. ; Chen. J. J.Chromatogr. A 2011, 1218 (51), 9149.
doi: 10.1016/j.chroma.2011.10.085
4 Fu S. ; Guo X. ; Wang H. ; Yang T. ; Wen Y. ; Yang H. Sens. Actuator B-Chem 2015, 212, 200.
doi: 10.1016/j.snb.2015.01.134
5 Du C. ; Hu Y. ; Li Y. ; Fan L. ; Li X. Talanta 2015, 138, 46.
doi: 10.1016/j.talanta.2015.02.005
6 Xie Y. F. ; Wang X. ; Ruan W. D ; Song W. ; Zhao B. Spectrosc. Spect. Anal 2011, 31 (9), 2319.
doi: 10.3964/j.issn.1000-0593(2011)09-2319-05
谢云飞; 王旭; 阮伟东; 宋薇; 赵冰. 光谱学与光谱分析, 2011, 31 (9), 2319.
doi: 10.3964/j.issn.1000-0593(2011)09-2319-05
7 Bahrami F. ; Maisonneuve M. ; Meunier M. ; Aitchison J. S. ; Mojahedi M. Biomed. Opt. Express 2014, 5 (8), 2481.
doi: 10.1364/BOE.5.002481
8 Zhou Y. ; Zhang P. ; He Y. ; Xu Z. ; Liu L. ; Ji Y. ; Ma H. Appl. Opt 2014, 53 (28), 6344.
doi: 10.1364/AO.53.006344
9 Abbas A. ; Linman M. J. ; Cheng Q. Sens. Actuator B-Chem 2011, 156 (1), 169.
doi: 10.1016/j.snb.2011.04.008
10 Alves I. ; Kurylo I. ; Coffinier Y. ; Siriwardena A. ; Zaitsev V. ; Harté E. ; Boukherroub R. ; Szunerits S. Anal. Chim. Acta 2015, 873, 71.
doi: 10.1016/j.aca.2015.02.060
11 Yamaguchi A. ; Hotta K. ; Teramae N. Anal. Chem 2009, 81 (1), 105.
doi: 10.1021/ac8015642
12 Hotta K. ; Yamaguchi A. ; Teramae N. J.Phys. Chem. C 2012, 116 (44), 23533.
doi: 10.1021/jp308724m
13 Jiao Y. ; Weiss S. M. Biosens. Bioelectron 2010, 25 (6), 1535.
doi: 10.1016/j.bios.2009.10.040
14 Rong G. ; Ryckman J. D. ; Mernaugh R. L. ; Weiss S. M. Appl. Phys. Lett 2008, 93, 161109.
doi: 10.1063/1.3005620
15 Qi Z. M. ; Honma I. ; Zhou H. Appl. Phys. Lett 2007, 90, 011102.
doi: 10.1063/1.2424643
16 Cameron P. J. ; Jenkins A. T. A. ; Knoll W. ; Marken F. ; Milson E. V. ; Williams T. L. J.Mater. Chem 2008, 18, 4304.
doi: 10.1039/b805733h
17 Zhang Z. ; Lu D. F. ; Qi Z. M. J.Phys. Chem. C 2012, 116 (5), 3342.
doi: 10.1021/jp2102429
18 Wan X. M. ; Chen C. ; Fan Z. B. ; Lu D. F. ; Gao R. ; Qi Z. M. Acta Phys. Sin 2016, 65 (13), 137801.
doi: 10.7498/aps.65.137801
万秀美; 陈晨; 范智博; 逯丹凤; 高然; 祁志美. 物理学报, 2016, 65 (13), 137801.
doi: 10.7498/aps.65.137801
19 Zhang Z. ; Qi Z. M. Chinese Janal. Chem 2010, 38 (11), 1538.
doi: 10.3724/SP.J.1096.2010.01538
张喆; 祁志美. 分析化学, 2010, 38 (11), 1538.
doi: 10.3724/SP.J.1096.2010.01538
20 Wang X. ; Hao W. ; Zhang H. ; Pan Y. ; Kang Y. ; Zhang X. ; Zou M. ; Tong P. ; Du Y. Spectrochim. Acta Part A 2015, 139, 214.
doi: 10.1016/j.saa.2014.11.104
21 Bao L. ; Sheng P. ; Li J. ; Wu S. ; Cai Q. ; Yao S. Analyst 2012, 137, 4010.
doi: 10.1039/C2AN35589B
22 Fu S. ; Guo X. ; Wang H. ; Yang T. ; Wen Y. Sens. Actuator B-Chem 2015, 212, 200.
doi: 10.1016/j.snb.2015.01.134
23 Fan Z. B. ; Gong X. Q. ; Lu D. F. ; Gao R. ; Qi Z. M. Acta Phys. -Chim. Sin 2017, 33 (5), 1001.
doi: 10.3866/PKU.WHXB201701131
范智博; 龚晓庆; 逯丹凤; 高然; 祁志美. 物理化学学报, 2017, 33 (5), 1001.
doi: 10.3866/PKU.WHXB201701131
24 Gong X. ; Wang L. ; Wan X. ; Lu D.F. ; Qi Z. M. Proc. SPIE 2017, 10250, 1025028.
doi: 10.1117/12.2267050
25 Wang L. ; Lu D. F. ; Gao R. ; Cheng J. ; Zhang Z. ; Qi Z. M. Acta Phys. -Chim. Sin 2017, 33 (6), 1223.
doi: 10.3866/PKU.WHXB201702282
王丽; 逯丹凤; 高然; 程进; 张喆; 祁志美. 物理化学学报, 2017, 33 (6), 1223.
doi: 10.3866/PKU.WHXB201702282
26 Feng A. ; Duan J. M. ; Du J. J. ; Jing C. Y. Environ. Chem 2014, 1, 47.
doi: 10.7524/j.issn.0254-6108.2014.01.001
冯艾; 段晋明; 杜晶晶; 景传勇. 环境化学, 2014, 1, 47.
doi: 10.7524/j.issn.0254-6108.2014.01.001
27 Hu Y. ; Liu S. ; Huang S. ; Pan W. Rare Metal Mat. Eng 2011, 40 (Suppl1), 469.
胡亚微; 刘珊; 黄思雅; 潘伟. 稀有金属材料与工程, 2011, 40, 469.
28 Alberius P. C. A. ; Frindell K. L. ; Hayward R. C. ; Kramer E. J. ; Stucky G. D. ; Chmelka B. F. Chem. Mater 2002, 14 (8), 3284.
doi: 10.1021/cm011209u
29 Zourob M. ; Goddard N. J. Biosens. Bioelectron 2005, 20 (9), 1718.
doi: 10.1016/j.bios.2004.06.031
30 Zhang Z. ; Liu J. ; Lu D. F. ; Qi Z. M. Acta Phys. -Chim. Sin 2014, 30 (9), 1771.
doi: 10.3866/PKU.WHXB201407071
张喆; 刘杰; 逯丹凤; 祁志美. 物理化学学报, 2014, 30 (9), 1771.
doi: 10.3866/PKU.WHXB201407071
31 Qi Z. M. ; Honma I. ; Zhou H. Anal. Chem 2006, 78 (4), 1034.
doi: 10.1021/ac051380f
32 http://www.chemspider.com/Chemical-Structure.2246.html
[1] 龚林吉,谢佳妮,朱双,谷战军,赵宇亮. 多功能纳米材料在肿瘤放疗增敏中的应用[J]. 物理化学学报, 2018, 34(2): 140-167.