Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2491-2509    DOI: 10.3866/PKU.WHXB201706132
所属专题: 密度泛函理论中的化学概念特刊
论文     
Chemical Reactivity Description in Density-Functional and Information Theories
NALEWAJSKI Roman F*()
Chemical Reactivity Description in Density-Functional and Information Theories
Roman F NALEWAJSKI*()
 全文: PDF(1033 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

In Quantum Information Theory (QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient (electronic current). The classical Shannon (S[p]) and Fisher (I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[φ] and I[φ], provide relevant coherence information supplements. Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by “thermodynamic” phase related to electronic density, which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction. Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R=A-B, composed of the Acidic (A) and Basic (B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A-B bond multiplicity/composition are extracted.

关键词: Density-functional theoryDonor-acceptor systemElectronegativity equalization and electron flowsInformation theoryMarkov chainsPhase-equilibria    
Abstract:

In Quantum Information Theory (QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient (electronic current). The classical Shannon (S[p]) and Fisher (I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[φ] and I[φ], provide relevant coherence information supplements. Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density, which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction. Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R=A-B, composed of the Acidic (A) and Basic (B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A-B bond multiplicity/composition are extracted.

Key words: Density-functional theory    Donor-acceptor system    Electronegativity equalization and electron flows    Information theory    Markov chains    Phase-equilibria
收稿日期: 2017-04-19 出版日期: 2017-06-13
中图分类号:  O646  
通讯作者: NALEWAJSKI Roman F     E-mail: nalewajs@chemia.uj.edu.pl
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
NALEWAJSKI Roman F

引用本文:

NALEWAJSKI Roman F. Chemical Reactivity Description in Density-Functional and Information Theories[J]. 物理化学学报, 2017, 33(12): 2491-2509.

Roman F NALEWAJSKI. Chemical Reactivity Description in Density-Functional and Information Theories. Acta Phys. -Chim. Sin., 2017, 33(12): 2491-2509.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706132        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2491

Fig 1  Orbital networks of classical communications in polarized reactive system Rn+ = (A+|B+): AO-resolved (Panel Ⅰ) and MO-resolved (Panel Ⅱ)
Fig 2  Concerted flows (Panel Ⅰ) in the complementary (c) arrangement of subsystems in the bimolecular reactive system ${{\bf{R}}_{\bf{c}}} \equiv \left( {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{a}}_{\bf{A}}}\mathit{\boldsymbol{ - - - }}{\mathit{\boldsymbol{b}}_{\bf{B}}}} \\ {{\mathit{\boldsymbol{b}}_{\bf{A}}}\mathit{\boldsymbol{ - - - }}{\mathit{\boldsymbol{a}}_{\bf{B}}}} \end{array}} \right);$here aα and bα denote the acidic (a) and basic (b) parts of reactant α = A, B, and most important cascade communications via single orbital intermediates (Panel Ⅱ). The latter combine either two external (inter-reactant) CT propagations (solid arrows), two internal (intra-reactant) P scatterings (broken arrows), or single external and internal communications
Fig 3  A qualitative diagram of the chemical-potential equalization and the Polarizational (P) or Charge-Transfer (CT) electron flows in the complementary reactive complex Rc of Fig.2I. First, the equalized levels of the chemical potential within isolated reactants Rα0 = (A0, B0) are split on their (mutually-closed) acidic (aα) and basic (bα) fragments, due to the perturbation created by the presence of the nearby bβ and aβ parts of the reaction partner Rβ0. These shifts within the initially polarized reactants {Rα+ = (aα+|bα+)} then trigger the P-flows {δNα}, which regain electronegativity equalization in {Rα+ = (aα+|bα+)} at their internal chemical-potential levels {μX+}. The resulting chemical-potential difference △μ+ = μA+ -μB+ < 0 ultimately determines the direction B+ → A+ and amount NCT of the subsequent inter-reactant CT, which establishes the global equilibrium in Rc as a whole, with equal levels of the chemical potential of the whole bonded (mutually-open) reactants {Rα* = (aα*|bα*)} and their constituent acidic {aα*} and basic {bα*} parts. One observes that a presence of B destabilizes A, △μA(B) > 0, while A stabilizes B, △μB(A) < 0
Fig 4  Qualitative diagram of the chemical potential displacements in the complementary complex Rc+ = (A+|B+), due to the primary CT perturbations nCT(1) and nCT(2) in RCT, and subsequent induced responses IA and IB of Fig.2.I. The CT perturbations split the initially equalized levels of the chemical potential within each reactant, {a0 = (aa*|ba*)}, with the inflow (outflow) of electron increasing (decreasing) the site chemical potential in {α+ = (aα+|bα+)}. These primary shifts subsequently trigger the polarizational flows {Ia}, which eventually generate the global electronegativity equalization in Rc as a whole: Rc = (A*|B*) = (aA*|bA*|aB*|bB*) ≡ RCT*
1 Fisher R. A Proc. Cambridge Phil. Soc 1925, 22, 700.
doi: 10.1017/S0305004100009580
2 (a) Shannon, C. E. Bell System Tech. J. 1948, 27, 379, 623. doi: 10.1002/j.1538-7305.1948.tb01338.x (b) Abramson, N. Information Theory and Coding; McGraw-Hill: New York, 1963.
3 Nalewajski R. F Quantum Information Theory of Molecular States New York: Nova Science Publishers, 2016.
4 (a) Nalewajski, R. F. Ann. Phys. (Leipzig) 2013, 525, 256. doi: (b)Nalewajski,R.F.J.Math.Chem.2013,51,369.doi:10.1007/s10910-012-0088-5" target="_blank">10.1002/andp.201200230
(b)Nalewajski,R.F.J.Math.Chem.2013,51,369.doi:10.1007/s10910-012-0088-5
5 Nalewajski, R. F. J. Math. Chem. 2014, 52, 588, 1292, 1921. doi: 10.1007/s10910-013-0280-2; notenoalianjie; notenoalianjie
6 Nalewajski R. F Mol. Phys 2014, 112, 2587.
doi: 10.1080/00268976.2014.897394
7 Nalewajski R. F. Int. J.Quantum Chem 2015, 115, 1274.
doi: 10.1002/qua.24750
8 Nalewajski R. F. J.Math. Chem 2015, 53, 1126.
doi: 10.1007/s10910-014-0468-0
9 Nalewajski R. F. J.Math. Chem 2016, 54, 1777.
doi: 10.1007/s10910-016-0651-6
10 Hohenberg P. ; Kohn W Phys. Rev 1964, 136
doi: 10.1103/PhysRev.136.B864
11 Kohn W. ; Sham L. J Phys. Rev 1965, 140
doi: 10.1103/PhysRev.140.A1133
12 Levy M. Proc. Natl. Acad. Sci. U. S. A 6062, 76, 6062.
doi: 10.1073/pnas.76.12.6062
13 Parr R. G. ; Yang W Density Functional Theory of Atoms and Molecules New York: Oxford University Press, 1989.
14 Nalewajski, R. F. ; Korchowiec, J. Charge Sensitivity Approach to Electronic Structure and Chemical Reactivity; World Scientific: Singapore, 1997.
15 Nalewajski R. F. ; Korchowiec J. ; Michalak A Topics in Current Chemistry 1996, 183, 25.
doi: 10.1007/3-540-61131-2
16 Nalewajski R. F Structure and Bonding 1993, 80, 115.
doi: 10.1007/BFb0036803
17 Geerlings P. ; de Proft F. ; Langenaeker W Chem. Rev. A 2003, 103, 1793.
doi: 10.1021/cr990029p
18 Chattaraj P. K Chemical Reactivity Theory: A Density Functional View Taylor & Francis, Boca Raton: CRC Press, 2009.
19 (a) Mulliken, R. S. J. Chem. Phys. 1934, 2, 782. doi: J.Am.Chem.Soc.1961,83,3547.doi:10.1021/ja01478a001
20 Sanderson R. T. J.Am. Chem. Soc 1952, 74, 272.
doi: 10.1021/ja01121a522
21 Gyftopoulos E. P. ; Hatsopoulos G. N. Proc. Natl. Acad. Sci. U. S. A 1965, 60, 786.
22 Parr R. G. ; Donnelly R. A. ; Levy M. ; Palke W. E. J.Chem. Phys 1978, 69, 4431.
doi: 10.1063/1.436433
23 Perdew J. P. ; Parr R. G. ; Levy M. ; Balduz J. L Phys. Rev. Lett 1982, 49, 1691.
doi: 10.1103/PhysRevLett.49.1691
24 Pearson, R. G, Hard and Soft Acids and Bases; Dowden, Hatchinson, Ross: Stroudsburg, 1973.
25 Parr R. G. ; Pearson R. G. J.Am. Chem. Soc 1983, 105, 7512.
doi: 10.1021/ja00364a005
26 Parr R. G. ; Yang W. J.Am. Chem. Soc 1984, 106, 4049.
doi: 10.1021/ja00326a036
27 Liu, S. Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K. Ed. CRC/Taylor & Francis: Boca Raton, 2009; p. 179.
28 Baekelandt B. G. ; Janssens G. O. A. ; Toufar H. ; Mortier W. J. ; Schoonheydt R. A. ; Nalewajski R. F. J.Phys. Chem 1995, 99, 9784.
doi: 10.1021/j100024a020
29 Nalewajski, R. F. Preceedings of the NATO ASI on Density Functional Theory; Dreizler, R. M. ; Gross, E. K. U. Eds. ; Plenum: New York, 1995; p 339.
30 Cohen M. H Topics in Current Chemistry 1996, 183, 143.
doi: 10.1007/3-540-61131-2
31 Nalewajski R. F Computers Chem 2000, 24, 243.
doi: 10.1016/S0097-8485(99)00070-4
32 Nalewajski R. F Adv. Quant. Chem 2006, 51, 235.
doi: 10.1016/S0065-3276(06)51006-8
33 Nalewajski R. F. ; B?a?ewicz D. ; Mrozek J. J.Math. Chem 2008, 44, 325.
doi: 10.1007/s10910-007-9312-0
34 Nalewajski R. F. J.Math. Chem 2010, 48, 752.
doi: 10.1007/s10910-010-9708-0
35 Nalewajski ; R. F. J. Math. Chem 2015, 53, 1.
doi: 10.1007/s10910-014-0405-2
36 Nalewajski, R. F. Information Theory of Molecular Systems; Elsevier: Amsterdam, 2006.
37 Nalewajski R. F Information Origins of the Chemical Bond New York: Nova Science Publishers, 2010.
38 Nalewajski, R. F. Perspectives in Electronic Structure Theory; Springer: Heidelberg, 2012.
39 Nalewajski R. F. Indian J.Chem. A 2014, 53, 1010.
40 Nalewajski, R. F. Phase Description of Reactive Systems. in Conceptual Density Functional Theory; Islam, N. Ed. , Apple Academic Press: Waretown, 2017, in press.
41 Nalewajski, R. F. Entropy Continuity, Electron Diffusion and Fragment Entanglement in Equilibrium States. In Advances in Mathematics Research; Nova Science Publishers: New York, 2017, in press.
42 Toro-Labbé, A. ; Gutiérez-Oliva, S. ; Politzer, P. ; Murray, J. S. Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K. Ed. ; CRC/Taylor & Francis: Boca Raton, 2009; p. 293.
43 López-Rosa S. ; Esquivel R. O. ; Angulo J. C. ; Antolín J. ; Dehesa J. S. ; Flores-Gallegos N. J.Chem. Theory Comput 2010, 6, 145.
doi: 10.1021/ct900544m
44 López-Rosa, S. Information-Theoretic Measures of Atomic and Molecular Systems; Ph. D. Dissertation, University of Granada: Granada, 2010.
45 Nalewajski R. F. J.Math. Chem 2011, 49, 371.
doi: 10.1007/s10910-010-9747-6
46 Nalewajski R. F. J.Math. Chem 2011, 49, 546.
doi: 10.1007/s10910-010-9761-8
47 Nalewajski R. F. J.Math. Chem 2011, 49, 806.
doi: 10.1007/s10910-010-9777-0
48 Nalewajski R. F. ; Gurdek P. J.Math. Chem 2011, 49, 1226.
doi: 10.1007/s10910-011-9815-6
49 Nalewajski R. F. Int. J.Quantum Chem 2012, 112, 2355.
doi: 10.1002/qua.2321
50 Nalewajski R. F. ; Gurdek P Struct. Chem 2012, 23, 1383.
doi: 10.1007/s11224-012-0060-9
51 Nalewajski R. F. J.Math. Chem 2011, 49, 2308.
doi: 10.1007/s10910-011-9888-2
52 Dirac, P. A. M. The Principles of Quantum Mechanics, 4th ed; Clarendon: Oxford, 1958.
53 Harriman J. E Phys. Rev. A 1981, 24, 680.
doi: 10.1103/PhysRevA.24.680
54 Zumbach, G. ; Maschke, K. Phys. Rev. A 1983, 28, 544. doi: Phys.Rev.A1984,29,1585.
55 von Weizs?cker C. F. Z Phys 1935, 96, 431.
doi: 10.1007/BF01337700
56 Callen H. B Thermodynamics: an Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics New York: Wiley, 1960.
57 Kullback S. ; Leibler R. A Ann. Math. Stat 1951, 22, 79.
doi: 10.1214/aoms/1177729694
58 Kullback S Information Theory and Statistics New York: Wiley, 1959.
59 Nalewajski R. F Topics in Catalysis 2000, 11, 469.
doi: 10.1023/A:1027273730694
60 Shaik S. ; Danovich D. ; Wu W. ; Hiberty P. C Nat. Chem 2009, 1, 443.
doi: 10.1038/NCHEM.327
61 Heitler W. ; London F. Z Physik 1927, 44, 455.
doi: 10.1007/BF01397394
62 Sveshnikov A. A Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions New York: Dover, 1968.
63 Rozanov Y. A Probability Theory: A Concise Course New York: Dover, 1969.
64 Pfeifer P. E Concepts of Probability Theory New York: Dover, 1978.
65 Hirshfeld F. L Theoret. Chim. Acta (Berl.) 1977, 44, 129.
doi: 10.1007/BF00549096
66 Chandra A. K. ; Michalak A. ; Nguyen M. T. ; Nalewajski R. F. J.Phys. Chem. A 1998, 102, 100182.
doi: 10.1021/jp983122a
[1] VON SZENTPÁLY László. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. 物理化学学报, 2018, 34(6): 675-682.
[2] HEIDAR-ZADEH Farnaz,AYERS Paul W.. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. 物理化学学报, 2018, 34(5): 514-518.
[3] ALIPOUR Mojtaba. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?[J]. 物理化学学报, 2018, 34(4): 407-413.
[4] GHARA Manas,CHATTARAJ Pratim K.. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. 物理化学学报, 2018, 34(2): 201-207.