Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2542-2549    DOI: 10.3866/PKU.WHXB201706151
论文     
无定型钼硫化物/还原氧化石墨烯的辐射合成及其电催化析氢性能
曹朋飞1,胡杨1,张有为2,彭静1,翟茂林1,*()
1 北京大学化学与分子工程学院,放射化学与辐射化学重点学科实验室,北京分子科学国家实验室,北京100871
2 北京航空材料研究院,隐身材料科技重点实验室,北京100095
Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction
Pengfei CAO1,Yang HU1,Youwei ZHANG2,Jing PENG1,Maolin ZHAI1,*()
1 Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
2 Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, P. R. China
 全文: PDF(2021 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

钼硫化物被认为是一种高效的电催化析氢反应的催化剂,因此其合成方法受到了广泛的研究和关注。本文以四硫代钼酸铵和氧化石墨为前驱体,利用γ射线对其辐照还原,一步法制备了钼硫化物/还原氧化石墨烯(MoSx/RGO)复合材料。通过X射线光电子能谱、X射线衍射、透射电子显微镜、Raman光谱等表征手段确认复合材料中的MoSx为无定型结构,且氧化石墨烯得到了有效的还原。同时系统研究了吸收剂量、前驱体配比对复合材料作为析氢反应催化剂性能的影响。结果发现,MoSx/RGO复合材料具有优异的催化性能,其催化起始电压为110 mV,在电流密度为10 mA·cm-2时过电势仅为160 mV,Tafel斜率为46 mV·dec-1,说明该催化剂催化析氢机理为Volmer-Heyrovesy机理。此外,MoSx/RGO复合材料还具有良好的催化稳定性。

关键词: 钼硫化物还原氧化石墨烯辐射还原电催化析氢Volmer-Heyrovesy机理    
Abstract:

Molybdenum sulfide is an efficient catalyst for the hydrogen evolution reaction (HER) and its synthesis has attracted significant attention in recent years. In this work, molybdenum sulfide/reduced graphite oxide (MoSx/RGO) was prepared by the γ-ray induced reduction of ammonium tetrathiomolybdate and graphite oxide. The composition, morphology, and structure of the MoSx/RGO composites were determined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The results confirmed the formation of amorphous MoSx/RGO composites. Subsequently, the effects of the absorbed dose and precursor ratio on the performance of the composite material as the catalyst for HER were studied systematically. The resultant MoSx/RGO composites were found to show excellent catalytic activity towards HER. With a catalyst loading of 0.275 mg·cm-2, an onset overpotential of 110 mV, a Tafel slope of 46 mV·dec-1, and a current density of 10 mA·cm-2 at the overpotential of 160 mV can be achieved. These results can be considered as the proof of Volmer-Heyrovesy mechanism. In addition, the MoSx/RGO catalyst also showed an excellent long-time stability during the evaluation for HER.

Key words: Molybdenum sulfide    Reduced graphene oxide    Radiation synthesis    Hydrogen evolution reaction    Volmer-Heyrovesy mechanism
收稿日期: 2017-05-03 出版日期: 2017-06-15
中图分类号:  O644  
基金资助: 国家自然科学基金(11405168);国家自然科学基金(11505011)
通讯作者: 翟茂林     E-mail: mlzhai@pku.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹朋飞
胡杨
张有为
彭静
翟茂林

引用本文:

曹朋飞,胡杨,张有为,彭静,翟茂林. 无定型钼硫化物/还原氧化石墨烯的辐射合成及其电催化析氢性能[J]. 物理化学学报, 2017, 33(12): 2542-2549.

Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706151        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2542

Namem(GO)/
mg
m((NH4)2MoS4)/
mg
m(EG)/
mL
Absorbed dose/kGy a
MoSx-2020300
MoSx /RGO-1402020100
MoSx /RGO-2402020300
MoSx /RGO-34020201000
MoSx /RGO-440220300
MoSx /RGO-540820300
MoSx /RGO-6404020300
表1  样品名称简写及其相应的制备条件
图1  GO,纯的MoS2,MoSx/RGO-1,MoSx/RGO-2,MoSx/RGO-3的XPS高分辨谱图
图2  RGO,MoSx,MoSx/RGO-1,MoSx/RGO-2,MoSx/RGO-3的XRD谱图
图3  不同材料的透射电镜图片
图4  不同吸收剂量制备的材料的催化性能
CatalystOnset η/mVη/mV at j = 10 mA?cm-2Tafel slope/(mV?dec-1)Reference
1T MoS2/187544
MoS21302305013
MoS2/rGO1001554111
MoS2/rGO1401804120
MoS2/Au1202607114
MoSx1502006027
MoSx/RGO11016046This work
表2  钼硫化物基催化剂催化性能对比表
图5  不同前驱体比例制备的材料的线性扫描伏安曲线
图6  MoSx/RGO-2复合材料在循环测试前后的线性扫描伏安曲线
1 Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Wei X. Acta Phys. -Chim. Sin 2016, 32 (7), 37.
doi: 10.3866/PKU.WHXB201604291
常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
doi: 10.3866/PKU.WHXB201604291
2 Ding Q. ; Song B. ; Xu P. ; Jin S. Chem 2016, 1 (5), 699.
doi: 10.1016/j.chempr.2016.10.007
3 Cao X. ; Tan C. ; Zhang X. ; Zhao W. ; Zhang H. Adv. Mater 2016, 28 (29), 6167.
doi: 10.1002/adma.201504833
4 Lukowski M. A. ; Daniel A. S. ; Meng F. ; Forticaux A. ; Li L. ; Jin S. J.Am. Chem. Soc 2013, 135 (28), 10274.
doi: 10.1021/ja404523s
5 Morales-Guio C. G. ; Hu X. Acc. Chem. Res 2014, 47 (8), 2671.
doi: 10.1021/ar5002022
6 Mak K. F. ; He K. L. ; Lee C. ; Lee G. H. ; Hone J. ; Heinz T. F. ; Shan J. Nat. Mater 2013, 12 (3), 207.
doi: 10.1038/nmat3505
7 Eda G. ; Yamaguchi H. ; Voiry D. ; Fujita T. ; Chen M. W. ; Chhowalla M. Nano Lett 2011, 11 (12), 5111.
doi: 10.1021/nl201874w
8 Zeng Z. ; Sun T. ; Zhu J. ; Huang X. ; Yin Z. ; Lu G. ; Fan Z. ; Yan Q. ; Hng H. H. ; Zhang H. Angew. Chem. Int. Ed 2012, 51 (36), 9052.
doi: 10.1002/anie.201204208
9 Zhan Y. ; Liu Z. ; Najmaei S. ; Ajayan P. M. ; Lou J. Small 2012, 8 (7), 966.
doi: 10.1002/smll.201102654
10 Merki D. ; Fierro S. ; Vrubel H. ; Hu X. Chem. Sci 2011, 2 (7), 1262.
doi: 10.1039/C1SC00117E
11 Li Y. ; Wang H. ; Xie L. ; Liang Y. ; Hong G. ; Dai H. J.Am. Chem. Soc 2011, 133 (19), 7296.
doi: 10.1021/ja201269b
12 Yang J. ; Shin H. S. J.Mater. Chem. A 2014, 2 (17), 5979.
doi: 10.1039/C3TA14151A
13 Kibsgaard J. ; Chen Z. ; Reinecke B. N. ; Jaramillo T. F. Nat. Mater 2012, 11 (11), 963.
doi: 10.1038/nmat3439
14 Shi Y. ; Wang J. ; Wang C. ; Zhai T. T. ; Bao W. J. ; Xu J. J. ; Xia X. H. ; Chen H. Y. J.Am. Chem. Soc 2015, 137 (23), 7365.
doi: 10.1021/jacs.5b01732
15 Ting L. R. L. ; Deng Y. ; Ma L. ; Zhang Y. J. ; Peterson A. A. ; Yeo B. S. ACS Catal 2016, 6 (2), 861.
doi: 10.1021/acscatal.5b02369
16 Liao L. ; Zhu J. ; Bian X. ; Zhu L. ; Scanlon M. D. ; Girault H. H. ; Liu B. Adv. Funct. Mater 2013, 23 (42), 5326.
doi: 10.1002/adfm.201300318
17 Youn D. H. ; Han S. ; Kim J. Y. ; Kim J. Y. ; Park H. ; Choi S. H. ; Lee J. S. ACS Nano 2014, 8 (5), 5164.
doi: 10.1021/nn5012144
18 Zhu H. ; Du M. ; Zhang M. ; Zou M. ; Yang T. ; Wang S. ; Yao J. ; Guo B. Chem. Commun 2014, 50 (97), 15435.
doi: 10.1039/C4CC06480A
19 Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442 (7100), 282.
doi: 10.1038/nature04969
20 Zheng X. ; Xu J. ; Yan K. ; Wang H. ; Wang Z. ; Yang S. Chem. Mater 2014, 26 (7), 2344.
doi: 10.1021/cm500347r
21 Fu X. ; Zhang Y. ; Cao P. ; Ma H. ; Liu P. ; He L. ; Peng J. ; Li J. ; Zhai M. Radiat. Phys. Chem 2016, 123, 79.
doi: 10.1016/j.radphyschem.2016.02.016
22 Yin Y. ; Xu X. ; Zhang Z. Chem. Commun 1998, (16), 1641.
doi: 10.1039/A802910E
23 Abedini A. ; Larki F. ; Saion E. B. ; Zakaria A. ; Hussein M. Z. J.Radioanal. Nucl. Chem 2012, 292 (1), 361.
doi: 10.1007/s10967-011-1611-z
24 Chu G. ; Bian G. ; Fu Y. ; Zhang Z. Mater. Lett 2000, 43 (3), 81.
doi: 10.1016/S0167-577X(99)00235-9
25 Cao P. ; Peng J. ; Li J. ; Zhai M. J. Power Sources 2017, 347, 210.
doi: 10.1016/j.jpowsour.2017.02.056
26 Vrubel H. ; Hu X. ; Vrubel H. ; Hu X. ACS Catal 2013, 3 (9), 2002.
doi: 10.1021/cs400441u
27 Benck J. D. ; Chen Z. ; Kuritzky L. Y. ; Forman A. J. ; Jaramillo T. F. ACS Catal 2012, 2 (9), 1916.
doi: 10.1021/cs300451q
28 Gu H. ; Yang Y. ; Tian J. X. ; Shi G. Y. ACS Appl. Mater. Inter 2013, 5 (14), 6762.
doi: 10.1021/am401738k
[1] 曾向东,赵晓昱,韦会鸽,王彦飞,唐娜,沙作良. 聚苯胺-还原氧化石墨烯复合材料的比电容及超级电容性能[J]. 物理化学学报, 2017, 33(10): 2035-2041.
[2] 许婧, 杨德志, 廖小珍, 何雨石, 马紫峰. 还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能[J]. 物理化学学报, 2015, 31(5): 913-919.
[3] 马慧玲,张龙,张有为,刘迪,孙超,曾心苗,翟茂林. 水溶液体系中氧化石墨烯的γ射线辐射还原[J]. 物理化学学报, 2015, 31(10): 2016-2022.
[4] 汪建德, 彭同江, 鲜海洋, 孙红娟. 三维还原氧化石墨烯/聚苯胺复合材料的制备及其超级电容性能[J]. 物理化学学报, 2015, 31(1): 90-98.
[5] 王丽, 马俊红. 氮掺杂还原氧化石墨烯负载铂催化剂的制备及甲醇电氧化性能[J]. 物理化学学报, 2014, 30(7): 1267-1273.
[6] 杨宇雯, 冯刚, 卢章辉, 胡娜, 张飞, 陈祥树. 原位合成钴/还原氧化石墨烯纳米粒子催化氨硼烷制氢[J]. 物理化学学报, 2014, 30(6): 1180-1186.
[7] 龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 部分还原氧化石墨烯/二氧化钛复合材料的水热合成及其光催化活性[J]. 物理化学学报, 2013, 29(06): 1344-1350.
[8] 杨士国, 陈庆德, 施建峰, 沈兴海. β-环糊精调控水溶液中Cu2+的辐射还原[J]. 物理化学学报, 2010, 26(04): 805-810.