Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2532-2541    DOI: 10.3866/PKU.WHXB201706153
论文     
熔盐辅助微波法制备g-C3N4包覆MgO-Al2O3-Fe2O3异质结催化剂及其光催化制过氧化氢性能
陈鑫,胡绍争*(),李萍,李薇,马宏飞,陆光
Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process
 全文: PDF(1891 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

工业上,双氧水的生产采用的是蒽醌法。此方法采用多步加氢和氧化过程,因此能耗很大。光催化制过氧化氢技术作为可持续和环境友好的新工艺,是传统蒽醌和电化学法的优秀替代者。本文采用熔盐辅助微波法制备了g-C3N4包覆MgO-Al2O3-Fe2O3异质结催化剂。制备的异质结催化剂在可见光下表现出优异的光催化制过氧化氢性能。熔盐的引入改变催化剂形貌的同时也影响了原料三聚氰胺的缩聚度,进而影响了其能带结构。制备的包覆结构能使两组分形成最大面积的异质结和强相互作用。这种强相互作用有利于光生电子-空穴对的分离和界面迁移,进而提高了过氧化氢的生成速率。制备的异质结催化剂的双氧水平衡浓度和生成速率分别为6.3 mmol·L-1和1.42 mmol·L-1·h-1,远高于两个单组份。不仅如此,制备的异质结催化剂还能抑制过氧化氢的分解。本文通过自由基捕获实验探讨了可能的反应机理和电子转移路径。

关键词: 石墨相氮化碳包覆结构异质结制过氧化氢熔盐辅助微波法    
Abstract:

H2O2 is industrially produced by the anthraquinone method, in which energy consumption is high because it involves multistep hydrogenation and oxidation reactions. Photocatalytic production of H2O2 has received increasing attention as a sustainable and eco-friendly alternative to conventional anthraquinone-based and electrochemical production processes. Herein, we report a novel molten salt-assisted microwave process for the synthesis of a g-C3N4-coated MgO-Al2O3-Fe2O3 (MAFO) heterojunction photocatalyst with outstanding H2O2 production ability. The addition of a molten salt during synthesis changes the morphology of the as-prepared catalysts and influences the degree of polycondensation of melamine, leading to a change in the band gap energy. The cladding structure forms the maximum area of the heterojunction, leading to strong electronic coupling between the two components. This strong electronic coupling results in a more effective separation of the photogenerated electron-hole pairs and a faster interfacial charge transfer, leading to higher H2O2 formation rate. The equilibrium concentration and formation rate of H2O2 over the as-prepared heterojunction catalyst were 6.3 mmol·L-1 and 1.42 mmol·L-1·h-1, which are much higher than that reported for g-C3N4 and MAFO individually. In addition, the H2O2 decomposition rate also decreases over the as-prepared heterojunction catalysts. A possible mechanism and the electron transfer routes have been proposed based on a free radical trapping experiment.

Key words: g-C3N4    Cladding structure    Heterojunction    H2O2 production    Molten salt-assisted microwave process
收稿日期: 2017-05-09 出版日期: 2017-06-15
中图分类号:  O643  
基金资助: 国家自然科学基金(41571464);辽宁省教育厅项目(L2014145);辽宁省自然科学基金项目(201602467)
通讯作者: 胡绍争     E-mail: hushaozhenglnpu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈鑫
胡绍争
李萍
李薇
马宏飞
陆光

引用本文:

陈鑫,胡绍争,李萍,李薇,马宏飞,陆光. 熔盐辅助微波法制备g-C3N4包覆MgO-Al2O3-Fe2O3异质结催化剂及其光催化制过氧化氢性能[J]. 物理化学学报, 2017, 33(12): 2532-2541.

链接本文:

http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2532

Fig 1  XRD patterns (a), N2 adsorption-desorption isotherms (b), UV-Vis spectra (c) and plots of the transformed Kubelka-Munk function versus the energy of light (d) of as-prepared catalyst.
MAFO--31.514.114.739.7
B-CN3957---4
MV-CN38.557---4.5
MV-MS-CN38.957.2---3.9
MV-CN/MAFO23.434.212.65.65.918.3
MV-MS-CN/MAFO23.634.512.55.55.818.1
Table 1  The components of as-prepared catalysts obtained by ICP.
Fig 2  SEM images of as-prepared B-CN (a), MAFO (b), MV-CN (c), MV-MS-CN (d), MV-CN/MAFO (e), MV-MS-CN/MAFO (f and g) and HRTEM of MV-MS-CN/MAFO (h).
Fig 3  XPS of as prepared catalysts in the region of Mg 2p (a), Al 2p (b), Fe 2p (c), O 1s (d), C 1s (e) and N 1s (f).
Fig 4  VB XPS (a), EIS (b) and PL (c) of as-prepared catalysts.
CatalystMg:Al:Fe aMelamine:MAFO b
10:2:15:2:11:1:11:2:54:12: 11:2
[H2O2] (mmol/L)4.26.33.72.82.96.34.1
Table 2  Influences of molar ratio of Mg:Al:Fe and mass ratio of melamine to MAFO on the H2O2 production performance.
CatalystH2O2 concentration/(mmol?L-1)kf/(mmol?L-1?h-1)kd/h-1
MAFO0.460.200.22
B-CN0.690.370.35
MV-CN0.720.380.35
MV-MS-CN0.920.440.36
MV-CN/MAFO3.90.920.27
MV-MS-CN/MAFO6.31.420.26
Table 3  H2O2 concentration and the kinetic parameters of as-prepared catalysts.
Fig 5  H2O2 production ability of MV-MS-CN/MAFO under different reaction conditions (a) and the H2O2 production ability over as-prepared catalysts (b).
Fig 6  Catalytic stability of MV-MS-CN/MAFO.
Fig 7  Photocatalytic RhB degradation performance (a) and the possible electrons transfer route (b) over MV-MS-CN/MAFO.
1 Campos-Martin J. M. ; Blanco-Brieva G. ; Fierro J. L. G. Angew. Chem. Int. Ed 2006, 45, 6962.
doi: 10.1002/anie.200503779
2 Samanta C. Appl. Catal. A 2008, 350, 133.
doi: 10.1016/j.apcata.2008.07.043
3 Yamazaki S. ; Siroma Z. ; Senoh H. ; Ioroi T ; Fujiwara N. ; Yasuda K. J.Power Source 2008, 178, 20.
doi: 10.1016/j.jpowsour.2007.12.013
4 Shaegh S. A. M. ; Nguyen N. T. ; Ehteshami S. M. M. ; Chan S. H. Energy Environ. Sci 2012, 5, 8225.
doi: 10.1039/C2EE21806B
5 Yamada Y. ; Fukunishi Y. ; Yamazaki S. ; Fukuzumi S. Chem. Commun 2010, 46, 7334.
doi: 10.1039/c0cc01797c
6 Yamada Y. ; Yoshida S. ; Honda T. ; Fukuzumi S. Energy Environ. Sci 2011, 4, 2822.
doi: 10.1039/C1EE01587G
7 Kato S. ; Jung J. ; Suenobua T. ; Fukuzumi S. Energy Environ. Sci 2013, 6, 3756.
doi: 10.1039/C3EE42815J
8 Tsukamoto D. ; Shiro A. ; Shiraishi Y. ; Sugano Y. ; Ichikawa S. ; Tanaka S. ; Hirai T. ACS Catal 2012, 2, 599.
doi: 10.1021/cs2006873
9 Diesen V. ; Jonsson M. J. Phys. Chem. C 2014, 118, 10083.
doi: 10.1021/jp500315u
10 Li S. ; Dong G. H. ; Hailili R. ; Yang L. P. ; Li Y. X. ; Wang F. ; Zeng Y. B. ; Wang C. Y. Appl. Catal. B: Environ 2016, 190, 26.
doi: 10.1016/j.apcatb.2016.03.004
11 Kong H. J. ; Won D. H. ; Kim J. ; Woo S. I. Chem. Mater 2016, 28, 1318.
doi: 10.1021/acs.chemmater.5b04178
12 Wang Z. ; Guan W. ; Sun Y. ; Dong F. ; Zhou Y. ; Ho W. K. Nanoscale 2015, 7, 2471.
doi: 10.1039/c4nr05732e
13 Yang P. ; Zhao J. ; Qiao W. ; Li L. ; Zhu Z. Nanoscale 2015, 7, 18887.
doi: 10.1039/c5nr05570a
14 Kang Y. ; Yang Y. ; Yin L. C. ; Kang X. ; Liu G. ; Cheng H. M. Adv. Mater 2015, 27, 4572.
doi: 10.1002/adma.201501939
15 Hu S. Z. ; Chen X. ; Li Q. ; Li F. Y. ; Fan Z. P. ; Wang H. ; Wang Y. J. ; Zheng B.H. ; Wu G. Appl. Catal. B: Environ 2017, 201, 58.
doi: 10.1016/j.apcatb.2016.08.002
16 Fan X. ; Zhang L. ; Wang M. ; Huang W. ; Zhou Y. ; Li M. ; Cheng R. ; Shi J. Appl. Catal. B: Environ 2016, 182, 68.
doi: 10.1016/j.apcatb.2015.09.006
17 Zhang Q. ; Hu S. Z. ; Fan Z. P. ; Liu D. S. ; Zhao Y. F. ; Ma H. F. ; Li F. Y. Dalton Trans 2016, 45, 3497.
doi: 10.1039/c5dt04901f
18 Zhu Z. ; Lu Z. ; Wang D. ; Tang X. ; Yan Y. ; Shi W. ; Wang Y. ; Gao N. ; Yao X. ; Dong H. Appl. Catal. B: Environ 2016, 182, 115.
doi: 10.1016/j.apcatb.2015.09.029
19 Hu S. Z. ; Li Y. M. ; Li F. Y. ; Fan Z. P. ; Ma H. F. ; Li W. ; Kang X. X. ACS Sus. Chem. Eng 2016, 4, 2269.
doi: 10.1021/acssuschemeng.5b01742
20 Nie Q. ; Yuan Q. ; Wang Q. J.Mater. Sci 2004, 39, 5611.
doi: 10.1023/B:JMSC.0000039301.70811.a4
21 Fu X. L. ; Wang X. X. ; Chen Z. X. ; Zhang Z. Z. ; Li Z. H. ; Leung D. Y. C. ; Wu L. ; Fu X. Z. Appl. Catal. B: Environ 2010, 95, 393.
doi: 10.1016/j.apcatb.2010.01.018
22 Chen J. ; Shen S. H. ; Guo P. H. ; Wu P. ; Guo L. J. J.Mater. Chem. A 2014, 2, 4605.
doi: 10.1039/C3TA14811D
23 Lan M. ; Fan G. L. ; Yang L. ; Li F. RSC Adv 2015, 5, 5725.
doi: 10.1039/C4RA07073A
24 Bojdys M. J. ; Muller J. ; Antonietti M. ; Thomas A. Chem. Eur. J 2008, 14, 8177.
doi: 10.1002/chem.200800190
25 Wirnhier E. ; Doblinger M. ; Gunzelmann D. ; Senker J. ; Lotsch B. V. ; Schnick W. Chem. Eur. J 2011, 17, 3213.
doi: 10.1002/chem.201002462
26 Zhao J. N. ; Ma L. ; Wang H. Y. ; Zhao Y. F. ; Zhang J. ; Hu S. Z. Appl. Surf. Sci 2015, 332, 625.
doi: 10.1016/j.apsusc.2015.01.233
27 Li S. J. ; Chen X. ; Hu S. Z. ; Li Q. ; Bai J. ; Wang F. RSC Adv 2016, 6, 45931.
doi: 10.1039/C6RA08817A
28 Babu G. A. ; Ravi G. ; Mahalingam T. ; Kumaresavanji M. ; Hayakawa Y. Dalton Trans 2015, 44, 4485.
doi: 10.1039/C4DT03483J
29 Schwenke A. M. ; Hoeppener S. ; Schubert U. S. J.Mater. Chem. A 2015, 3, 23778.
doi: 10.1039/C5TA06937H
30 Dom R. ; Subasri R. ; Hebalkar N. Y. ; Chary A. S. ; Borse P. H. RSC Adv 2012, 2, 12782.
doi: 10.1039/C2RA21910G
31 Yuan Y. P. ; Yin L. S. ; Cao S. W. ; Gu L. N. ; Xu G. S. ; Du P. ; Chai H. ; Liao Y. S. ; Xue C. Green Chem 2014, 16, 4663.
doi: 10.1039/C4GC01517G
32 Ding Y. ; Zhao W. ; Hu H. ; Ma B. C. Green Chem 2008, 10, 910.
doi: 10.1039/B808404A
33 Saha M. ; Das M. ; Nasani R. ; Choudhuri I. ; Yousufuddin M. ; Nayek H. P. ; Shaikh M. M. ; Pathak B. ; Mukhopadhyay S. Dalton Trans 2015, 44, 20154.
doi: 10.1039/C5DT01471A
34 Choi J. ; Zhang S. H. ; Hill J. M. Catal. Sci. Technol 2012, 2, 179.
doi: 10.1039/C1CY00301A
35 Ding Y. D. ; Song G. ; Zhu X. ; Chen R. ; Liao Q. RSC Adv 2015, 5, 30929.
doi: 10.1039/C4RA15127E
36 Gu Z. H. ; Li K. Z. ; Qing S. ; Zhu X. ; Wei Y. G. ; Li Y. T. ; Wang H. RSC Adv 2014, 4, 47191.
doi: 10.1039/C4RA06715K
37 Kim Y. I. ; Atherton S. J. ; Brigham E. S. ; Mallouk T. E. J.Phys. Chem 1993, 97, 11802.
doi: 10.1021/j100147a038
38 Kannapu H. P. R. ; Neeli C. K. P. ; Rao K. S. R. ; Kalevaru V. N. ; Martin A. ; Burri D. R. Catal. Sci. Technol 2016, 6, 5494.
doi: 10.1039/C6CY00397D
39 Lee S. W. ; Heo J. ; Gordon R. G. Nanoscale 2013, 5, 8940.
doi: 10.1039/c3nr03082b
40 Zhou X. S. ; Jin B. ; Chen R. Q. ; Peng F. ; Fang Y. P. Mater. Res. Bull 2013, 48, 1447.
doi: 10.1016/j.materresbull.2012.12.038
41 Xu H. ; Yan J. ; She X. J. ; Xu L. ; Xia J. X. ; Xu Y. G. ; Song Y. H. ; Huang L. Y. ; Li H. M. Nanoscale 2014, 6, 1406.
doi: 10.1039/C3NR04759H
42 Li K. X. ; Yan L. S. ; Zeng Z. X. ; Luo S. L. ; Luo; X. B ; Liu X. M. ; Guo H. Q. ; Guo Y. H. Appl. Catal. B: Environ 2014, 156, 141.
doi: 10.1016/j.apcatb.2014.03.010
43 Niu P. ; Yang Y. Q. ; Yu J. C. ; Liu G. ; Cheng H. M. Chem. Commun 2014, 50, 10837.
doi: 10.1039/c4cc03060e
44 Ge L. ; Han C. Appl. Catal. B: Environ 2012, 117, 268.
doi: 10.1016/j.apcatb.2012.01.021
45 Zhang Y. W. ; Liu J. H. ; Wu G. ; Chen W. Nanoscale 2012, 4, 5300.
doi: 10.1039/c2nr30948c
46 Xu Y. ; Xu H. ; Wang L. ; Yan J. ; Li H. ; Song Y. ; Huang L. ; Cai G. Dalton Trans 2013, 42, 7604.
doi: 10.1039/c3dt32871f
47 He B. L. ; Dong B. ; Li H. L. Electrochem. Commun 2007, 9, 425.
doi: 10.1016/j.mseb.2007.06.017
48 Huang Q. W. ; Tian S. Q. ; Zeng D. W. ; Wang X. X. ; Song W. L. ; Li Y. Y. ; Xiao W. ; Xie C. S. ACS Catal 2013, 3, 1477.
doi: 10.1021/cs400080w
49 Teranishi M. ; Naya S. ; Tada H. J.Am. Chem. Soc 2010, 132, 7850.
doi: 10.1021/ja102651g
50 Maurino V. ; Minero C. ; Mariella G. ; Pelizzetti E. Chem. Commun 2005, 36, 2627.
doi: 10.1039/b418789j
51 Liu G. ; Niu P. ; Yin L. C. ; Cheng H. M. J.Am. Chem. Soc 2012, 134, 9070.
doi: 10.1021/ja302897b
52 Kim H. ; Kwon O. S. ; Kim S. ; Choi W. ; Kim J. H. Energy Environ. Sci 2016, 9, 1063.
doi: 10.1039/c5ee03115j
[1] 罗盼,孙芳,邓菊,许海涛,张慧娟,王煜. NiS-Ni3S2树状异质结阵列在析氧反应中的应用[J]. 物理化学学报, 2018, 34(12): 1397-1404.
[2] 何畅,侯剑辉. 基于非富勒烯受体的溶液加工型全小分子太阳能电池研究进展[J]. 物理化学学报, 2018, 34(11): 1202-1210.
[3] 程若霖,金锡雄,樊向前,王敏,田建建,张玲霞,施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[4] 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492-1498.
[5] 白金,陈鑫,奚兆毅,王翔,李强,胡绍争. 溶剂热后处理对石墨相氮化碳光化学固氮产氨性能的影响[J]. 物理化学学报, 2017, 33(3): 611-619.
[6] 王悦,蒋权,尚介坤,许杰,李永昕. 介孔氮化碳材料合成的研究进展[J]. 物理化学学报, 2016, 32(8): 1913-1928.
[7] 唐伟,王兢. 金属氧化物异质结气体传感器气敏增强机理[J]. 物理化学学报, 2016, 32(5): 1087-1104.
[8] 左会文,陆春海,任玉荣,李奕,章永凡,陈文凯. 单层石墨相氮化碳负载Pt4团簇吸附O2的第一性理论研究[J]. 物理化学学报, 2016, 32(5): 1183-1190.
[9] 王彦娟,孙佳瑶,封瑞江,张健. 三元金属硫化物-石墨相氮化碳异质结催化剂的制备及光催化性能[J]. 物理化学学报, 2016, 32(3): 728-736.
[10] 赵宗彦,田凡. CdS/FeP复合光催化材料界面结构与性质的理论研究[J]. 物理化学学报, 2016, 32(10): 2511-2517.
[11] 乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 郝秋艳, 刘彩池. nc-Si:H/c-Si硅异质结太阳电池中本征硅薄膜钝化层的优化[J]. 物理化学学报, 2015, 31(6): 1207-1214.
[12] 李湘奇, 范庆飞, 李广立, 黄瑶翰, 高照, 范希梅, 张朝良, 周祚万. 合成ZnO纳米阵列及刺突状CuO/ZnO异质结[J]. 物理化学学报, 2015, 31(4): 783-792.
[13] 于建华, 范闽光, 李斌, 董丽辉, 张飞跃. 混合相二氧化钛石墨烯复合物的制备及光催化性能[J]. 物理化学学报, 2015, 31(3): 519-526.
[14] 王利果, 张晓丹, 王奉友, 王宁, 姜元建, 郝秋艳, 许盛之, 魏长春, 赵颖. 不同形貌的金字塔结构对硅片表面钝化和异质结太阳电池的影响[J]. 物理化学学报, 2014, 30(9): 1758-1763.
[15] 张剑芳, 王岩, 沈天阔, 舒霞, 崔接武, 陈忠, 吴玉程. 脉冲沉积制备Cu2O/TiO2纳米管异质结的可见光光催化性能[J]. 物理化学学报, 2014, 30(8): 1535-1542.