Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2463-2471    DOI: 10.3866/PKU.WHXB201706193
论文     
高氯酸碳酰肼过渡金属配合物晶体形态的理论和实验研究
杨利*(),张国英,刘影,张同来
Theoretical and Experimental Studies on the Crystal Morphology of Transition-Metal Carbohydrazide Perchlorate Complexes
Li YANG*(),Guo-Yng ZHANG,Ying LIU,Tong-Lai ZHANG
 全文: PDF(2435 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

通过Bravais-Freidel-Donnay-Harker(BFDH法)和growth morphology(生长形态法)方法,研究了高氯酸碳酰肼锰、高氯酸碳酰肼铁、高氯酸碳酰肼钴、高氯酸碳酰肼镍和高氯酸碳酰肼镉的晶体生长形态。结果表明,这5种化合物的晶形均接近长块状,在(101)和(002)晶面的相对生长速度最小,为晶体的最重要的生长方向。根据晶体的主要生长晶面,推断出官能团中具有活性氢原子的晶形控制剂可以有效地控制晶形。此外,通过实验合成这5中配合物,并用冷场发射扫描电子显微镜观察其晶体形貌,通过对比表明growth morphology的模拟结果更接近实验所得形貌,因此该方法可以更可靠地预测高氯酸碳酰肼金属配合物的晶体形态。

关键词: 晶体形貌预测附着能生长速率    
Abstract:

The crystal growth morphologies of manganese carbohydrazide perchlorate, iron carbohydrazide perchlorate, cobalt carbohydrazide perchlorate, nickel carbohydrazide perchlorate and cadmium carbohydrazide perchlorate were investigated by Bravais-Freidel-Donnay-Harker (BFDH) and growth morphology method. The results show that the crystal morphologies of them are close to oblong block shapes, and the growth on (101)and (002) faces are the most important growth direction because of the minimum relative growth rates. According to the cleaved main growth faces, it can be inferred that crystal-control reagents with the active hydrogen atoms in the functional groups can effectively control the crystal morphology for them. In addition, the experimental morphologies of them were synthesized and observed by a coldfield-emission scanning electron microscope. It is concluded that AE model are nearer to experimental morphology, and more reliable to predict crystal morphologies for carbohydrazide perchlorates.

Key words: Crystal morphology    Prediction    Attachment energy    Growth rate
收稿日期: 2017-05-17 出版日期: 2017-06-19
中图分类号:  O641  
基金资助: 爆炸科学与技术国家重点实验室基金(YB2016-17);国家自然科学基金(11672040)
通讯作者: 杨利     E-mail: yanglibit@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨利
张国英
刘影
张同来

引用本文:

杨利,张国英,刘影,张同来. 高氯酸碳酰肼过渡金属配合物晶体形态的理论和实验研究[J]. 物理化学学报, 2017, 33(12): 2463-2471.

Li YANG,Guo-Yng ZHANG,Ying LIU,Tong-Lai ZHANG. Theoretical and Experimental Studies on the Crystal Morphology of Transition-Metal Carbohydrazide Perchlorate Complexes. Acta Physico-Chimica Sinca, 2017, 33(12): 2463-2471.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706193        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2463

Fig 1  Molecular structure of transition carbohydrazide perchlorate complexes
ComplexabcαβγV
[Mn(CHZ)3](ClO4)2Exp.10.1978.59321.41290.00100.86090.001842.6
Calc.10.4098.88822.12090.00103.48890.00-
[Fe(CHZ)3](ClO4)2Exp.10.0668.45821.19490.00100.69390.001773.1
Calc.10.5999.08927.45490.00100.53690.00-
[Co(CHZ)3](ClO4)2Exp.10.0498.53521.43090.00101.17090.001803.2
Calc.11.6639.37522.46590.00107.16690.00-
[Ni(CHZ)3](ClO4)2Exp.9.9748.55721.43390.00101.04090.001795.4
Calc.10.6599.33322.41390.00118.00090.00-
[Cd(CHZ)3](ClO4)2Exp.10.2818.61721.36090.00100.53090.001860.4
Calc.10.56710.12122.35990.00107.35090.00-
Table 1  Cell dimensions and cell angles of transition carbohydrazide perchlorate complexes
Fig 2  Morphology of [Mn(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b)
Fig 3  Morphology of [Fe(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b)
Fig 4  Morphology of [Co(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b)
Fig 5  Morphology of [Ni(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b)
Fig 6  Morphology of [Cd(CHZ)3](ClO4)2 in vacuum by BFDH model (a) and AE model (b)
ComplexFaceBDFH/%AE/%Total facet areaEatt/(kcal·mol-1)Rij
[Mn(CHZ)3](ClO4)2(101)36.30844.74210643.860-23.0871.00
(002)27.23821.4725108.189-36.5151.58
(103)4.0783.206762.661-41.4551.80
(011)28.51530.4727249.124-42.2091.83
(111)2.7950.10825.754-49.4862.14
(112)1.066----
Sum10010023789.588-192.752
[Fe(CHZ)3](ClO4)2(002)30.63627.8018428.415-33.7601.00
(101)29.33627.8928456.229-35.7511.06
(011)30.59829.9159069.522-46.4861.38
(103)6.25610.9623323.425-41.0061.21
(111)1.6452.956896.303-55.1481.63
(112)1.5280.473143.506-57.7371.71
Sum10010030317.401-269.888
[Co(CHZ)3](ClO4)2(101)36.04834.5678644.242-27.3481.00
(002)28.67526.8476713.906-32.6431.19
(011)31.19622.6435662.429-45.9831.68
(101)0.9706.1461537.002-37.7731.38
(103)-0.36490.991-41.7321.53
(111)2.8519.1232281.353-46.4251.70
(110)0.260----
(112)-0.31077.645-51.8481.90
Sum10010025007.569-283.752
[Ni(CHZ)3](ClO4)2(101)36.03130.3757247.670-27.8281.00
(002)29.96019.6574690.440-33.2881.20
(011)30.71527.5706578.443-44.0851.58
(103)0.5285.6891357.419-38.6741.39
(101)-12.0832883.167-33.2961.20
(111)2.6354.2871022.946-48.2301.73
(112)0.1300.11627.720-51.7361.86
(110)-0.22353.194-50.6641.82
Sum10010023860.999-327.801
[Cd(CHZ)3](ClO4)2(002)25.07033.974786.511-7.9481.00
(101)24.05523.097534.700-10.6251.34
(011)34.22126.635616.606-13.1991.66
(103)11.6849.879228.703-12.1241.53
(112)4.2232.65961.565-16.0502.02
(111)0.7463.75086.824-15.4831.95
(113)-0.0050.116-16.6722.10
Sum1001002315.025-92.101
Table 2  Predicted Morphologies of the BDFH and AE models for transition carbohydrazide perchlorate complexes
Fig 7  Cleaved main crystal faces of [Mn(CHZ)3](ClO4)2
Fig 8  Cleaved main crystal faces of [Fe(CHZ)3](ClO4)2
Fig 9  Cleaved main crystal faces of [Co(CHZ)3](ClO4)2
Fig 10  Cleaved main crystal faces of [Ni(CHZ)3](ClO4)2
Fig 11  Cleaved main crystal faces of [Cd(CHZ)3](ClO4)2
Fig 12  The bonding network of the (002) face; (a) top view of the face, (b) schematic image of incorporation of growth units
Fig 13  The bonding network of the (101) face; (a) top view of the face, (b) schematic image of incorporation of growth units
Fig 14  The bonding network of the (011) face; (a) top view of the face, (b) schematic image of incorporation of growth units
Fig 15  Crystal-morphology of [Mn(CHZ)3](ClO4)2, [Fe(CHZ)3](ClO4)2, [Ni(CHZ)3](ClO4)2 and [Cd(CHZ)3](ClO4)2 without crystal-control reagent
1 Duan X. ; Wei C. ; Liu Y. ; Pei C. J. Hazard. Mater. 2010, 174
doi: 10.1016/j.jhazmat.2009.09.03
2 Czerski H. ; Proud W. J. Appl. Phys. 2007, 102, 113515.
doi: 10.1063/1.2818106
3 Taylor G. ; Thomas A. T. J. Cryst. Growth 1968, 3, 391.
doi: 10.1016/0022-0248(68)90181-4
4 Baer M. R. Thermochim. Acta 2002, 384, 351.
doi: 10.1016/S0040-6031(01)00794-8
5 Fabbiani F. P. ; Pulham C. R. Chem. Soc. Rev. 2006, 35, 932.
doi: 10.1039/B517780B
6 Kr ber H. ; Teipel U. Propell. Explos. Pyrot. 2008, 33, 33.
doi: 10.1002/prep.200800205
7 Kishore K. Sunitha M. R. AIAA J. 1979, 17, 1118.
doi: 10.2514/3.61286
8 Akiyoshi M. ; Nakamura H. ; Hara Y. Propell. Explos. Pyrot. 2000, 25, 41.
doi: 10.1002/(SICI)1521-4087(200001)25:1<41::AID-PREP41>3.0.CO;2-X
9 Schoyer H. F. R. ; Welland-Veltmans W. H. M. ; Louwers J. ; Korting P. A. O. G. ; vander Heijden A. E. D. M. ; Keizers H. L. J. ; vanden Berg R. P. J. Propul. Power 2002, 18, 138.
doi: 10.2514/2.5909
10 Dutta R. L. ; Sarkar A. K. J. Inorg. Nucl. Chem. 1981, 43, 2557.
doi: 10.1016/0022-1902(81)80302
11 Mansour A. K. ; Eid M. M. ; Khalil N. S. Molecules 2003, 8, 744.
doi: 10.3390/81000744
12 Akiyoshi M. ; Hirata N. ; Nakamura H. ; Hara Y. J. Jap. Explos. Soc. 1996, 57, 238.
13 Bustos C. ; Burckhardt O. ; Schrebler R. ; Carrillo D. ; Arif A. ; Cowley A. ; Nunn C. Inorg. Chem. 1990, 29, 3996.
doi: 10.1021/ic00345a017
14 Bushuyev O. S. ; Arguelles F. A. ; Brown P. ; Weeks B. L. ; Hope-Weeks L. J. ; Eur J. Inorg. Chem. 2011, 4622
doi: 10.1002/ejic.201100465
15 Rahn P. C. ; Siggia S. Anal. Chem. 1973, 45, 2336.
doi: 10.1021/ac60336a012
16 Akiyoshi M. ; Hirata N. ; Nakamura H. ; Hara Y. J. Jap. Explos. Soc. 1997, 58, 68.
17 Akiyoshi M. ; Nakamura H. ; Hara Y. Propell. Explos. Pyrot. 2000, 25, 224.
doi: 10.1002/1521-4087(200011)25:5<224:AID-PREP224>3.0.CO;2-O
18 Talawar M. B. ; Agrawal A. P. ; Chhabra J. S. ; Asthana S. N. J. Hazard. Mater. 2004, 113, 57.
doi: 10.1016/j.jhazmat.2004.07.001
19 Qi S. Y. ; Li Z. M. ; Zhang T. L. ; Zhou Z. N. ; Yang L. ; Zhang J. G. ; Qiao X.J. ; Yu K. B. Acta Chim. Sin. 2011, 69, 987.
20 Mi Z.H. ; Chen S. T. ; Jing Z. ; Yang L. ; Zhang T. L. ; Eur J. Inorg. Chem. 2016, 24, 3978.
doi: 10.1002/ejic.201600479
21 Mi Z.H. ; Zhang T. L. ; Zhang J. G. ; Zhou Z. N. ; Yang L. RSC Adv. 2016, 6, 46828.
doi: 10.1039/C6RA07277A
22 Joas M. ; Klapotke T. M. Propell. Explos. Pyrot. 2015, 40, 246.
doi: 10.1002/prep.201400142
23 Casewit C. J. ; Colwell K. S. ; Rappe A. K. J. Am. Chem. Soc. 1992, 114, 10035.
doi: 10.1021/ja00051a041
24 Casewit C. J. ; Colwell K. S. ; Rappe A. K. J. Am. Chem. Soc. 1992, 114, 10046.
doi: 10.1021/ja00051a042
25 Rappe A. K. ; Colwell K. S. ; Casewit C. J. Inorg. Chem. 1993, 32, 3438.
doi: 10.1021/ic00068a012
26 Kern A. ; Nather C. ; Studt F. ; Tuczek F. Inorg. Chem. 2004, 43, 5003.
doi: 10.1021/ic030347d
27 Bureekaew S. ; Amirjalayer S. ; Tafipolsky M. ; Spickermann C. ; Roy T. K. ; Schmid R. Phys. Status Solidi B 2013, 250, 1128.
doi: 10.1002/pssb.201248460
28 Ogawa T. ; Kurita N. ; Sekino H. ; Kitao O. ; Tanaka S. Chem. Phys. Lett. 2003, 374, 271.
doi: 10.1016/S0009-2614(03)00720-6
29 Rappe A. K. ; Casewit C. J. ; Colwell K. S. ; Goddard W. A. ; Skiff W. M. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040
30 Fischer T. H. ; Almlof J. J. Phys. Chem. 1992, 96, 9768.
doi: 10.1021/j100203a036
31 Perdew J. P. ; Chevary J. ; Vosko S. ; Jackson K. A. ; Pederson M. R. ; Singh D. ; Fiolhais C. Phys. Rev.B 1992, 46, 6671.
doi: 10.1103/PhysRevB.46.6671
32 Perdew J. P. ; Wang Y. Phys. Rev. B 1992, 46, 12947.
doi: 10.1103/PhysRevB.46.12947
33 Docherty R. ; Clydesdale G. ; Roberts K. J. ; Bennema P. J. Phys. D: Appl. Phys. 1991, 24, 89.
doi: 10.1088/0022-3727/24/2/001
34 Hartman P. ; Perdok W. G. I. Acta Crystallogr. 1955, 8, 49.
doi: 10.1107/S0365110X55000121
35 Bennema P. ; Meekes H. ; Boerrigter S. ; Cuppen H. ; Deij M. ; Van Eupen J. ; Verwer P. ; Vlieg E. Cryst. Growth Des. 2004, 4, 905.
doi: 10.1021/cg034182v
36 Berkovitch-Yellin Z. J. Am. Chem. Soc. 1985, 107, 8239.
doi: 10.1021/ja00312a070
37 Kawasaki T. ; Tanaka H. P. Natl. Acad. Sci. 2010, 107, 14036.
doi: 10.1073/pnas.1001040107/-/DCSupplemental
38 Chen J. X. ; Wang J. K. ; Zhang Y. ; Wu H. ; Chen W. ; Guo Z. C. J. Cryst. Growth 2004, 265, 266.
doi: 10.1016/j.jcrysgro.2004.01.055
39 Givand J. C. ; Rousseau R. W. ; Ludovice P. J. J. Cryst. Growth 1998, 194, 228.
doi: 10.1016/S0022-0248(98)00535-1
40 Lv C. H. ; Zhang T. L. ; Ren L. B. ; Yu K. B. ; Lu Z. ; Cai R. J. ; Chin J. Explos. Propell. 2000, 23, 31.
[1] 陈芳, 刘圆圆, 王建龙, 苏宁宁, 李丽洁, 陈红春. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.
[2] 邓玉玲, 余璐, 黄强. 人类蛋白激酶组的多靶点分子对接系统[J]. 物理化学学报, 2016, 32(9): 2355-2363.
[3] 张相雄, 陈民. 均匀电场对冰晶结构及生长的影响[J]. 物理化学学报, 2014, 30(7): 1208-1214.
[4] 李咏, 周玮, 代志军, 陈渊, 王志明, 袁哲明. 基于序列特征筛选与支持向量回归预测蛋白质折叠速率[J]. 物理化学学报, 2014, 30(6): 1091-1098.
[5] 朱志臣, 王强, 贾青竹, 夏淑倩, 马沛生. 多种类杂环化合物的药理和毒理活性系数构效关系[J]. 物理化学学报, 2014, 30(6): 1086-1090.
[6] 卢君然, 李乙, 于吉红, 陆莹. 利用FraGen程序预测沸石分子筛的骨架结构[J]. 物理化学学报, 2013, 29(08): 1661-1665.
[7] 朱志臣, 王强, 贾青竹, 汤红梅, 马沛生. 多种类表面活性剂临界胶束浓度定量构效关系[J]. 物理化学学报, 2013, 29(01): 30-34.
[8] 时静洁, 陈利平, 陈网桦, 石宁, 杨惠, 徐伟. 基于启发式方法和支持向量机方法预测有机物的热导率[J]. 物理化学学报, 2012, 28(12): 2790-2796.
[9] 王攀文, 龚新奇, 李春华, 陈慰祖, 王存新. 蛋白质表面模块划分及其在结合位点预测中的应用[J]. 物理化学学报, 2012, 28(11): 2729-2734.
[10] 张长胜, 来鲁华. 蛋白质相互作用预测、设计与调控[J]. 物理化学学报, 2012, 28(10): 2363-2380.
[11] 黄阳玉, 阳秀凤, 李昊田, 纪晓峰, 程洪礼, 赵蕴杰, 郭大川, 李林, 刘士勇. 蛋白质-RNA相互作用界面预测与设计[J]. 物理化学学报, 2012, 28(10): 2390-2400.
[12] 陶婉君, 李沉纹, 尹宗宁. 基于定量构效关系设计自乳化系统[J]. 物理化学学报, 2011, 27(01): 71-77.
[13] 黄永棋, 刘志荣. 天然无序蛋白质: 序列-结构-功能的新关系[J]. 物理化学学报, 2010, 26(08): 2061-2072.
[14] 陈渊, 袁哲明, 周玮, 熊兴耀. 基于地统计学与支持向量回归的QSAR建模[J]. 物理化学学报, 2009, 25(08): 1587-1592.
[15] 李爱玲;熊金平;左禹;王成忠. 聚氨酯胶粘剂的热分解动力学研究[J]. 物理化学学报, 2007, 23(10): 1622-1626.