Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (12): 2472-2479    DOI: 10.3866/PKU.WHXB201706222
论文     
热辅助存储磁盘硅掺杂非晶碳薄膜氧化的ReaxFF反应力场分子动力学模拟
刘青康*(),宋文平*(),黄其涛,张广玉,侯珍秀
ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording
Qing-Kang LIU*(),Wen-Ping SONG*(),Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU
 全文: PDF(1364 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

热辅助磁存储技术是一种提高磁盘存储面密度到1 Tb·in-2的方法,在数据写入过程中的激光局部加热会使磁盘非晶碳薄膜氧化。本文采用ReaxFF反应力场分子动力学方法,建立硅掺杂非晶碳(a-C:Si)薄膜在激光诱导氧化的模型,从原子尺度分析a-C:Si薄膜的结构变化、氧化过程,确定了氧化机理以及激光加热次数对氧化的影响规律。a-C:Si薄膜的氧化发生在加热阶段和初始降温阶段,在加热过程中a-C:Si薄膜的体积扩张和降温过程中原子应变引起碳原子团簇,均使薄膜中sp2碳含量增加。随着加热次数的增加,表面未饱和原子数量减少和氧原子低扩散率使薄膜氧化速率逐渐降低。此外,非晶薄膜的表面缺陷使分子氧成为氧化剂,表面原子剪切应变使Si-O-O-Si链中O-O键断裂,重构氧化表面,进而促进a-C:Si薄膜的氧化。

关键词: 热辅助磁存储硅掺杂非晶碳薄膜氧化ReaxFF分子动力学模拟    
Abstract:

Heat-assisted magnetic recording (HAMR) is one of the promising ways to extend the magnetic recording area density to 1 Tb·in-2 in hard disk drives (HDDs).High temperature induced by laser heating can cause carbon overcoat (COC) oxidation.Reactive molecular dynamics (MD) simulations are performed to investigate the oxidation process of silicon-doped amorphous carbon (a-C:Si) films for HAMR application.The atomic details of the structure evolution and oxidation process are investigated, and, the oxidation mechanism of the a-C:Si film is clarified.The effect of the duration of laser irradiation on the oxidation of the a-C:Si film is investigated.The oxidation occurs during heating and the beginning of cooling process.Both volume expansion during heating process and cluster of carbon atoms during cooling process increase the rate of sp2 carbon.Because of the decrease in the amount of unsaturated silicon atoms and low diffusion coefficient of atomic oxygen, the oxidation rate of the a-C:Si film decreases with laser irradiation cycles.The molecular oxygen is the oxidant due to surface defect of a-C:Si film.The atomic strains break the O-O bonds in Si-O-O-Si linkages and rearrange the surface oxide layers, and process the oxidation of the a-C:Si film.

Key words: Heat-assisted magnetic recording    Silicon-doped amorphous carbon    Oxidation    ReaxFF    Molecular dynamics simulations
收稿日期: 2017-05-03 出版日期: 2017-06-22
中图分类号:  O643  
基金资助: 国家自然科学基金(51405103);中国博士后科学基金(2014M551230);中国博士后科学基金(2015T80335)
通讯作者: 刘青康,宋文平     E-mail: qingkangliu86@gmail.com;songwenping@hit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘青康
宋文平
黄其涛
张广玉
侯珍秀

引用本文:

刘青康,宋文平,黄其涛,张广玉,侯珍秀. 热辅助存储磁盘硅掺杂非晶碳薄膜氧化的ReaxFF反应力场分子动力学模拟[J]. 物理化学学报, 2017, 33(12): 2472-2479.

Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201706222        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I12/2472

Fig 1  The atomic configuration of the system at three different temperatures in the first laser irradiation cycle At (a) 300 K before laser irradiation; (b) 800 K and (c) 300 K after the laser irradiation cycle. The red, cyan and yellow atoms represent oxygen, carbon and silicon atoms, respectively
Fig 2  The system potential energy and number of Si―O and C―O bonds as a function of temperature in the first laser irradiation cycle The black line, blue circle and red triangle represent the potential energy, number of Si―O and C―O bonds, respectively
Fig 3  The potential energy of oxygen and carbon as a function of temperature in the first laser irradiation cycle The black quadrate and red circle represent the potential energy of oxygen and carbon, respectively. The range of vertical axles is identical
Fig 4  The density of unoxidized a-C:Si slab as a function of temperature in the first laser irradiation cycle
Fig 5  The pair radius distribution functions (RDFs) of C―C bonds in unoxidized a-C:Si slab at different temperatures in the first laser irradiation cycle The vertical dotted lines indicate the C―C bond length of acetylene, graphite and diamond, respectively
Fig 6  The distribution of atomic shear strains at three different temperatures in the first laser irradiation cycle At (a) 300 K before laser irradiation, (b) 800 K and (c) 300 K after laser irradiation cycle, respectively
Cluster sizeNBefore-300KN800KNAfter-300K
116111398
2321520
3101811
4653
5232
6541
7511
8421
9320
10300
11200
12300
14001
15110
18100
25200
43100
58100
60010
98010
122010
178100
271010
625001
Table 1  The number of cluster size of carbon atoms at three different temperatures in the first laser irradiation cycle
Fig 7  The effect of laser irradiation cycles on the number of Si―O and C―O bonds and system potential energy The red circle, blue triangle and black quadrate represent number of Si―O and C―O bonds and potential energy of system, respectively. The 0 means data measured before the laser irradiation, the 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 mean dates measured after the corresponding laser irradiation cycles
Fig 8  The effect of laser irradiation cycles on the largest carbon cluster size and density of unoxidized a-C:Si slab The black quadrate and red triangle represent the largest carbon cluster size and density of unoxidized a-C:Si slab respectively. The 0 means data measured before the laser irradiation, the 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 means dates measured after the corresponding laser irradiation cycles
Fig 9  The oxidation mechanism of a-C:Si slab The green and blue ellipses highlight the O-O bonds, and green and blue circles highlight the atomic oxygen
1 Kryder M. H. ; Gage E. C. ; Mcdaniel T. W. ; Challener W. A. ; Rottmayer R. E. ; Ju G. P. ; Hsia Y. T. ; Erden M. F. P. IEEE 2008, 96 (11), 1810.
doi: 10.1109/JPROC.2008.2004315
2 Weller D. ; Moser A. IEEE Trans. Magn. 1999, 35 (6), 4423.
doi: 10.1109/20.809134
3 Ma Y. S. ; Chen X. Y. ; Liu B. Tribol. Lett. 2012, 48 (3), 337.
doi: 10.1007/s11249-012-0032-7
4 Pathem B. K. ; Guo X. C. ; Rose F. ; Marchon B. IEEE Trans. Magn. 2013, 49 (7), 3721.
doi: 10.1109/TMAG.2012.2236645
5 Liu Q. K. ; Li L. Q. ; Zhang H. T. ; Huang Q. T. ; Zhang G. Y. ; Hou Z. X. IEEE Trans. Magn. 2017, 53 (3), 3301007.
doi: 10.1109/TMAG.2016.2626344
6 Jones P. M. ; Ahner J. ; Platt C. L. ; Tang H. ; Hohlfeld J. IEEE Trans. Magn. 2014, 50 (3), 144.
doi: 10.1109/TMAG.2013.2285599
7 Wang N. ; Komvopoulos K. IEEE Trans. Magn. 2011, 47 (9), 2277.
doi: 10.1109/TMAG.2011.2139221
8 Ma Y. S. ; Ji R. ; Man Y. J. ; Shakerzadeh M. ; Zheng R. Y. ; Seet H. L. ; Hu J. F. IEEE Trans. Magn. 2016, 52 (2), 3300606.
doi: 10.1109/TMAG.2015.2494857
9 Wu W. J. ; Hon M. H. Surf. Coat. Technol. 1999, 111 (2-3), 134.
doi: 10.1016/S0257-8972(98)00719-1
10 Khriachtchev L. ; Vainonen-Ahlgren E. ; Sajavaara T. ; Ahlgren T. ; Keinonen J. J. Appl. Phys. 2000, 88 (4), 2118.
doi: 10.1063/1.1305831
11 Er K. H. ; So M. G. J. Ceram. Process. Res. 2013, 14 (1), 134.
12 Hatada R. ; Baba K. ; Flege S. ; Ensinger W. Surf. Coat. Technol. 2016, 305, 93.
doi: 10.1016/j.surfcoat.2016.08.011
13 Kim J. W. ; Hong B. X. ; Lim D. C. ; Lee D. B. Surf. Coat. Technol. 2005, 193 (1), 288.
doi: 10.1016/j.surfcoat.2004.08.168
14 Newsome D. A. ; Sengupta D. ; Foroutan H. ; Russo M. F. ; van Duin A. C. T. J. Phys. Chem. C 2012, 116 (30), 16111.
doi: 10.1021/jp306391p
15 Newsome D. A. ; Sengupta D. ; van Duin A. C. J. Phys. Chem. C 2013, 117 (10), 5014.
doi: 10.1021/jp307680t
16 Sun Y. ; Liu Y. J. ; Xu F. Chin. Phys. B 2015, 24 (9), 096203.
doi: 10.1088/1674-1056/24/9/096203
17 Shen X. ; Tuttle B. R. ; Pantelides S. T. J. Appl. Phys. 2013, 114, 033522.
doi: 10.1063/1.4815962
18 van Duin A. C. T. ; Dasgupta S. ; Lorant F. ; Goddard W. A. J. Phys. Chem. A 2001, 105 (41), 9396.
doi: 10.1021/jp004368u
19 Chenoweth K. ; van Duin A. C. T. ; Goddard W. A. J. Phys. Chem. A 2008, 112 (5), 1040.
doi: 10.1021/jp709896w
20 van Duin A. C. T. ; Strachan A. ; Stewman S. ; Zhang Q. S. ; Xu X. ; Goddard W. A. J. Phys. Chem. A 2003, 107 (19), 3803.
doi: 10.1021/jp0276303
21 Liu X. L. ; Li X. X. ; Han S. ; Qiao X. J. ; Zhong B. J. ; Guo L. Acta Phys. -Chim. Sin. 2016, 32 (6), 1424.
doi: 10.3866/PKU.WHXB201603233
刘晓龙; 李晓霞; 韩嵩; 乔显杰; 钟北京; 郭力. 物理化学学报, 2016, 32 (6), 1424.
doi: 10.3866/PKU.WHXB201603233
22 Diao Z. J. ; Zhao Y. M. ; Chen B. ; Duan C. L. Acta Chim. Sin. 2012, 70, 2037.
doi: 10.6023/A12070451
刁智俊; 赵跃民; 陈博; 段晨龙. 化学学报, 2012, 70, 2037.
doi: 10.6023/A12070451
23 Wang Z. M. ; Zheng M. ; Xie Y. B. ; Li X. X. ; Zeng M. ; Cao H. B. ; Guo L. Acta Phys. -Chim. Sin. 2017, 33 (7), 1399.
doi: 10.3866/PKU.WHXB201704132
王子民; 郑默; 谢勇冰; 李晓霞; 曾鸣; 曹宏斌; 郭力. 物理化学学报, 2017, 33 (7), 1399.
doi: 10.3866/PKU.WHXB201704132
24 Yang Z. ; He Y. Acta Phys. -Chim. Sin. 2016, 32 (4), 921.
doi: 10.3866/PKU.WHXB201512251
杨镇; 何远航. 物理化学学报, 2016, 32 (4), 921.
doi: 10.3866/PKU.WHXB201512251
25 Li L. Q. ; Xu M. ; Song W. P. ; Ovcharenko A. ; Zhang G. Y. ; Jia D. Appl. Surf. Sci. 2013, 286, 287.
doi: 10.1016/j.apsusc.2013.09.073
26 Stukowski A. Model. Simul. Mater. Sci. Eng. 2010, 18, 1.
doi: 10.1088/0965-0393/18/1/015012
27 Bai L. C. ; Srikanth N. ; Wu H. ; Liu Y. ; Liu B. ; Zh ou ; K. J. Non-Cryst. Solids. 2016, 443 (8)
doi: 10.1016/j.jnoncrysol.2016.03.025
28 Namilae S. ; Radhakrishnan B. ; Sarma G. Compos. Sci. Technol. 2007, 67, 1302.
doi: 10.1016/j.compscitech.2006.10.002
29 Shimizu F. ; Ogata S. ; Li J. Mater. Trans. 2007, 48 (11), 2923.
doi: 10.2320/matertrans.MJ200769
30 Tang C. ; Wong C. H. Intermetallics 2016, 70, 61.
doi: 10.1016/j.intermet.2015.12.010
31 Kageshima H. ; Shiraishi K. Phys. Rev. Lett. 1998, 81 (26), 5936.
doi: 10.1103/PhysRevLett.81.5936
32 Kelires P. C. Phys. Rev. B 2000, 62 (23), 15686.
doi: 10.1103/PhysRevB.62.15686
33 Li Y. Y. ; Xiao W. ; Li H. L. J. Nucl. Mater. 2016, 480, 75.
doi: 10.1016/j.jnucmat.2016.08.004
34 Pamungkas M. A. ; Joe M. ; Kim B. H. ; Lee K. R. J. Appl. Phys. 2011, 110, 053513.
doi: 10.1063/1.3632968
35 Kao D. B. ; Mcvittie J. P. ; Nix W. D. ; Saraswat C. K. IEEE Trans. Electron Devices 1988, 35 (1), 25.
doi: 10.1109/16.2412
36 Liu H. I. ; Biegelsen D. K. ; Johnson N. M. ; Ponce F. A. ; Pease R. F. W. J. Vac. Sci. Technol. B 1993, 11 (6), 2532.
doi: 10.1116/1.586661
37 Khalilov U. ; Pourtois G. ; Bogaerts A. ; van Duin A. C. T. ; Neytsa E. C. Nanoscale 2013, 5, 719.
doi: 10.1039/C2NR32387G
[1] 高云楠,刘世桢,赵振清,陶亨聪,孙振宇. 二氧化碳多相催化加氢制C2及以上烃类和醇的研究进展[J]. 物理化学学报, 2018, 34(8): 858-872.
[2] 袁明明,李迪帆,赵秀阁,马文保,孔康,倪文秀,顾青雯,侯震山. 二氧化硅包覆的杂多酸在双氧水存在条件下催化氧化甘油[J]. 物理化学学报, 2018, 34(8): 886-895.
[3] 张玉景,代兴超,王红利,石峰. 二氧化碳和胺催化合成甲酰胺反应研究[J]. 物理化学学报, 2018, 34(8): 845-857.
[4] 陈文琼,关永吉,张晓萍,邓友全. 分子动力学模拟研究外电场对咪唑类离子液体振动谱的影响[J]. 物理化学学报, 2018, 34(8): 912-919.
[5] 周智华,夏书梅,何良年. 绿色催化二氧化碳、炔丙醇和亲核试剂的三组分反应[J]. 物理化学学报, 2018, 34(8): 838-844.
[6] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[7] 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938-944.
[8] 林雪婷,付名利,贺辉,吴军良,陈礼敏,叶代启,胡芸,王逸凡,WENWilliam. 以金属有机骨架为牺牲模板制备MnOx-CeO2及其催化氧化[J]. 物理化学学报, 2018, 34(6): 719-730.
[9] 许家乐,胡磊,王璐,邓金侠,陈骏,邢献然. (Fe1-xNix)ZrF6固溶体晶体结构与可调控的热膨胀性质[J]. 物理化学学报, 2018, 34(4): 339-343.
[10] 王岩,李雄,胡善玮,徐倩,鞠焕鑫,朱俊发. Ca掺杂的CeO2模型催化剂的形貌和电子结构及其与CO2分子的相互作用[J]. 物理化学学报, 2018, 34(12): 1381-1389.
[11] 王恒伟,路军岭. 原子层沉积:一种多相催化剂“自下而上”气相制备新策略[J]. 物理化学学报, 2018, 34(12): 1334-1357.
[12] 董丹,闵志远,刘俊,何谷峰. 紫外臭氧处理增强溶液法MoO3薄膜的空穴注入能力[J]. 物理化学学报, 2018, 34(11): 1286-1292.
[13] 杨春和,唐爱伟,滕枫,蒋克健. 钙钛矿CH3NH3PbI3晶体的电化学[J]. 物理化学学报, 2018, 34(11): 1197-1201.
[14] 任春醒,李晓霞,郭力. CL-20热分解反应机理的ReaxFF分子动力学模拟[J]. 物理化学学报, 2018, 34(10): 1151-1162.
[15] 王海燕,石高全. 层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用[J]. 物理化学学报, 2018, 34(1): 22-35.