Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (2): 208-212    DOI: 10.3866/PKU.WHXB201707031
所属专题: 密度泛函理论中的化学概念特刊
论文     
Effect of Pressure on Cesium Iodide Band Gap
CEDILLO Andrés1,*(),CORTONA Pietro2
1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 México, DF, México
2 Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS UMR 8580, Université Paris-Saclay, CentraleSupélec, Grande Voie des Vignes, F-92295 Chatenay-Malabry, France
Effect of Pressure on Cesium Iodide Band Gap
Andrés CEDILLO1,*(),Pietro CORTONA2
1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 México, DF, México
2 Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS UMR 8580, Université Paris-Saclay, CentraleSupélec, Grande Voie des Vignes, F-92295 Chatenay-Malabry, France
 全文: PDF(713 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

The evolution of cesium iodide band gap as a function of pressure is studied in the range from 0 to 60 GPa. Within this range, two structural phase transitions occurred, and the band gap was affected by the compression pressure and structural rearrangement. The band gap estimation under pressure, as obtained by the density functional theory methods, successfully reproduced the experimental trend of the optical gap and electrical resistivity, namely, a general decreasing tendency, an early maximum, and a discontinuous peak around 40 GPa.

关键词: Pressure-induced phase transitionCrystalline structureBand gapResistivity    
Abstract:

The evolution of cesium iodide band gap as a function of pressure is studied in the range from 0 to 60 GPa. Within this range, two structural phase transitions occurred, and the band gap was affected by the compression pressure and structural rearrangement. The band gap estimation under pressure, as obtained by the density functional theory methods, successfully reproduced the experimental trend of the optical gap and electrical resistivity, namely, a general decreasing tendency, an early maximum, and a discontinuous peak around 40 GPa.

Key words: Pressure-induced phase transition    Crystalline structure    Band gap    Resistivity
收稿日期: 2017-05-05 出版日期: 2017-07-03
通讯作者: CEDILLO Andrés     E-mail: cedillo@xanum.uam.mx
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
CEDILLO Andrés
CORTONA Pietro

引用本文:

CEDILLO Andrés,CORTONA Pietro. Effect of Pressure on Cesium Iodide Band Gap[J]. 物理化学学报, 2018, 34(2): 208-212, 10.3866/PKU.WHXB201707031

Andrés CEDILLO,Pietro CORTONA. Effect of Pressure on Cesium Iodide Band Gap. Acta Phys. -Chim. Sin., 2018, 34(2): 208-212, 10.3866/PKU.WHXB201707031.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201707031        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I2/208

Fig 1  CsI in the orthorhombic Pmma structure. The large purple spheres represent the iodide ions, while the small green ones correspond to the cesium ions. color online.
Fig 2  CsI in the orthorhombic Pnma structure. The large purple spheres represent the iodide ions, while the small green ones correspond to the cesium ions. color online.
Cell Pmma (51) Pnma (62)
Cs Wickoff sites e Wickoff sites 4c
I Wickoff sites f Wickoff sites 4c
Table 1  Internal coordinates within the unit cell for the CsI orthorhombic structures.
Fig 3  Relative enthalpy for the different CsI phases, PBE results in hartree·formula-1.
Cell Pressure/GPa a/? b/? c/?
B1 0 7.858
B2 0 4.670
Pmma 38 5.304 3.629 5.333
Pnma 44 5.678 5.330 6.422
Table 2  PBE lattice parameters for the different CsI structures.
Fig 4  Deviation from the cubic symmetry in the CsI Pmma structure. The ideal cubic value is subtracted from the lattice parameter ratios. All the values correspond to the PBE results.
Fig 5  Volume per formula for the different CsI phases. The fit to experimental P-V data from Mao et al. 22 is shown by a continuous line.
Cell1 Pressure/GPa Atom x z
Pmma 38 Cs 0.2212
I 0.7234
Pnma 44 Cs 0.5912 0.3759
I 0.5917 0.8759
Table 3  PBE internal coordinates for the different CsI orthorhombic structures.
Fig 6  Effect of the pressure in the CsI band gap. The experimental reported values are shown by triangles. Asaumi4 reported threshold energies, which underestimate the band gap, while the values from Knittle and Jeanloz10 represent optical gaps. The experimental band gap of CsI, at zero pressure, is 6.135 eV 42.
1 Nelson D. A. Jr. ; Ruoff A. L. Phys. Rev. Lett. 1979, 42, 383.
doi: 10.1103/PhysRevLett.42.383
2 Besson J. M. ; Itie J. P. ; Weill G. ; Makarenko I. J. Phys. Lett. 1982, 43, 401.
doi: 10.1051/jphyslet:019820043011040100
3 Asaumi K. ; Kondo Y. Solid State Comm. 1981, 40, 715.
doi: 10.1016/0038-1098(81)90813-9
4 Asaumi K. Phys. Rev. B 1984, 29, 1118.
doi: 10.1103/PhysRevB.29.1118
5 Huang T. L. ; Ruoff A. L. Phys. Rev. B 1984, 29, 1112.
doi: 10.1103/PhysRevB.29.1112
6 Itie J. ; Polian A. ; Besson J. J. Phys. Coll. 1984, 45, 47.
doi: 10.1051/jphyscol:1984809
7 Knittle E. ; Jeanloz R. Science 1984, 223, 53.
doi: 10.1126/science.223.4631.53
8 Huang T. L. ; Brister K. E. ; Ruoff A. L. Phys. Rev. B 1985, 30, 2968.
doi: 10.1103/PhysRevB.30.2968
9 Brister K. E. ; Vohra Y. K. ; Ruoff A. L. Phys. Rev. B 1985, 31, 4657.
doi: 10.1103/PhysRevB.31.4657
10 Knittle E. ; Jeanloz R. J. Phys. Chem. Solids 1985, 46, 1179.
doi: 10.1016/0022-3697(85)90147-7
11 Knittle E. ; Rudy A. ; Jeanloz R. Phys. Rev. B 1985, 31, 588.
doi: 10.1103/PhysRevB.31.588
12 Reichlin R. ; Ross M. ; Martin S. ; Goettel K. A. Phys. Rev. Lett. 1986, 56, 2858.
doi: 10.1103/PhysRevLett.56.2858
13 Vohra Y. K. ; Brister K. E. ; Weir S. T. ; Duclos S. J. ; Ruoff A. L. Science 1986, 231, 1136.
doi: 10.1126/science.231.4742.1136
14 Williams Q. ; Jeanloz R. Phys. Rev. Lett. 1986, 56, 163.
doi: 10.1103/PhysRevLett.56.163
15 Aidun J. ; Bukowinski M. S. T. ; Ross M. Phys. Rev. B 1984, 29, 2611.
doi: 10.1103/PhysRevB.29.2611
16 Christensen N. E. ; Satpathy S. Phys. Rev. Lett. 1985, 55, 600.
doi: 10.1103/PhysRevLett.55.600
17 Satpathy S. ; Christensen N. E. ; Jepsen O. Phys. Rev. B 1985, 32, 6793.
doi: 10.1103/PhysRevB.32.6793
18 Vohra Y. K. ; Duclos S. J. ; Ruoff A. L. Phys. Rev. Lett. 1985, 54, 570.
doi: 10.1103/PhysRevLett.54.570
19 Satpathy S. Phys. Rev. B 1986, 33, 8706.
doi: 10.1103/PhysRevB.33.8706
20 Baroni S. ; Giannozzi P. Phys. Rev. B 1987, 35, 765.
doi: 10.1103/PhysRevB.35.765
21 Cedillo, A. ; Vela, A. ; Gázquez, J. L. Structural Phase Transitions in Cesium Halides. In Density Functional Methods in Chemistry; Labanowski, J. K., Andzelm, J. W. Eds. ; Springer: New York, USA, 1991; pp. 293–306. doi: 10.1007/978-1-4612-3136-3_19
22 Mao H. K. ; Wu Y. ; Hemley R. J. ; Chen L. C. ; Shu J. F. ; Finger L. W. Cox D. E. Phys. Rev. Lett. 1990, 64, 1749.
doi: 10.1103/PhysRevLett.64.1749
23 Winkler B. ; Milman V. J. Phys. Condens. Matter 1997, 9, 9811.
doi: 10.1088/0953-8984/9/45/009
24 Xu Y. ; Tse J. S. ; Oganov. A.R. ; Cui. T. ; Wang H. ; Ma Y. ; Zou G. Phys. Rev. B 2009, 79, 144110.
doi: 10.1103/PhysRevB.79.144110
25 Babushkin A. N. High Pressure Res. 1991, 6, 349.
doi: 10.1080/08957959208201042
26 Eremets M. I. ; Shimizu K. ; Kobayashi T. C. ; Amaya K. J. Phys. Condens. Matter 1998, 10, 11519.
doi: 10.1088/0953-8984/10/49/037
27 Breskin A. Nucl. Instrum. Meth. Phys. Res. A 1996, 371, 116.
doi: 10.1016/0168-9002(95)01145-5
28 Va'vra J. ; Breskin A. ; Buzulutskov A. ; Chechik R. ; Shefer E. Nucl. Instrum. Meth. Phys. Res. A 1997, 387, 154.
doi: 10.1016/S0168-9002(96)00980-1
29 Sham L. J. ; Schlüter M. Phys. Rev. Lett. 1983, 51, 1888.
doi: 10.1103/PhysRevLett.51.1888
30 Perdew J. P. Int. J. Quantum Chem. Symp. 1986, 19, 497.
doi: 10.1002/qua.560280846
31 Perdew J. P. ; Yang W. ; Burke K. ; Yang Z. ; Gross E. K. U. ; Scheffler M. ; Scuseria G. E. ; Henderson T. M. ; Zhang I. Y. ; Ruzsinszky A. ; et al Proc. Natl. Acad. Sci. 2017, 114, 2801.
doi: 10.1073/pnas.1621352114
32 Gonze X. ; Amadon B. ; Anglade P. M. ; Beuken J. M. ; Bottin F. ; Boulanger P. ; Bruneval F. ; Caliste D. ; Caracas R. ; C?té M. ; et al Comput. Phys. Comm. 2009, 180, 2582.
doi: 10.1016/j.cpc.2009.07.007
33 Gonze X. ; RignaneseI G. M. ; Verstraete M. ; Beuken J. M. ; Pouillon Y. ; Caracas R. ; Jollet F. ; Torrent M. ; Zerah G. ; Mikami M. ; et al Z. Kristallogr. 2005, 220, 558.
doi: 10.1524/zkri.220.5.558.65066
34 Bl?chl P. E. Phys. Rev. B 1994, 50, 17953.
doi: 10.1103/PhysRevB.50.17953
35 Torrent M. ; Jollet F. ; Bottin F. ; Zerah G. ; Gonze X. Comput. Mat. Sci. 2008, 42, 337.
doi: 10.1016/j.commatsci.2007.07.020
36 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865
37 Perdew J. P. ; Ruzsinszky A. ; Csonka G. I. ; Vydrov O. A. ; Scuseria G. E. ; Constantin L.A. ; Zhou X. ; Burke K. Phys. Rev. Lett. 2008, 100, 136406.
doi: 10.1103/PhysRevLett.100.136406
38 Cortona P. Phys. Rev. B 1992, 46, 2008.
doi: 10.1103/PhysRevB.46.2008
39 Demichelis R. ; Civalleri B. ; D'Arco P. ; Dovesi R. Int. J. Quantum Chem. 2010, 110, 2260.
doi: 10.1002/qua.22574
40 Cedillo A. ; Torrent M. ; Cortona P. J. Phys. Condens. Matter 2016, 28, 185401.
doi: 10.1088/0953-8984/28/18/185401
41 Buongiorno M. ; Baroni S. ; Giannozzi P. Phys. Rev. Lett. 1992, 69, 1069.
doi: 10.1103/PhysRevLett.69.1069
42 Lipp M. J. ; Yoo C. H. ; Strachan D. ; Daniels W. B. Phys. Rev. B 2006, 73, 085121.
doi: 10.1103/PhysRevB.73.085121
No related articles found!