Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (2): 168-176    DOI: 10.3866/PKU.WHXB201707111
论文     
富钾正长岩水热分解生成沸石反应热力学
刘昶江1,马鸿文1,*(),张盼2
1 中国地质大学(北京)材料科学与工程学院,北京100083
2 昊青薪材(北京)技术有限公司,北京100083
Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation
Changjiang LIU1,Hongwen MA1,*(),Pan ZHANG2
1 School of Materials Science and Technology, China University of Geosciences, Beijing 100083, P. R. China
2 Blue Sky Technology Corporation, Beijing 100083, P. R. China
 全文: PDF(2214 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

以安徽某地富钾正长岩粉体为原料,研究其水热碱法分解生成沸石化合物的反应热力学。采用“聚合多面体模型”计算了几种沸石的热力学参数,结合矿物端员组分热力学数据及“混合电解质模型”,构建了富钾正长岩-NaOH-H2O水热体系平衡热力学模型。反应Gibbs自由能计算结果表明,在160-300 ℃范围内,由富钾正长岩水热分解生成羟钙霞石、方沸石、P型、A型等沸石的反应可自发进行;通过OLI Analyzer 9.3软件对该体系不同条件下的相平衡进行模拟,预测了富钾正长岩水热碱法分解生成羟钙霞石、方沸石的反应条件。通过实验验证,生成的方沸石呈规则的四角三八面体晶型,粒径约50 μm;羟钙霞石呈柱状,长约20 μm,截面尺寸约500 nm-1 μm,K2O溶出率97%以上。

关键词: 富钾正长岩水热碱法沸石化学平衡热力学    
Abstract:

The thermodynamics of hydrothermal decomposition reaction of potassic syenite, collected from Anhui province, China, with the formation of zeolites was studied in this work.The phase equilibrium model of the potassic syenite-NaOH-H2O hydrothermal system was constructed by the combination of "mixed solvent electrolyte model" and thermodynamic data of mineral end-members, as well as zeolites species, which was calculated from the"polymer model".According to the Gibbs free energy of reaction, the decomposition of potassic syenite into hydroxycancrinite, analcime, zeolite P, and zeolite A occurs spontaneously within the temperature range of 160-300℃.The formation conditions of hydroxycancrinite and analcime were predicted from the simulation of phase equilibrium by OLI Analyzer 9.3 software.After experimental verification, analcime (regular tetragonal trisoctahedron, ~50 μm) and hydroxycancrinite (columnar crystals, ~20 μm in length, 500 nm-1 μm in diameters) were respectively obtained with >97% K2O leaching.

Key words: Potassic syenite    Alkali-hydrothermal method    Zeolite    Chemical equilibrium    Thermodynamics
收稿日期: 2017-06-05 出版日期: 2017-07-11
中图分类号:  O641  
基金资助: 中央高校基本科研业务项目(2652015371);中国地质调查项目(12120113087700)
通讯作者: 马鸿文     E-mail: mahw@cugb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘昶江
马鸿文
张盼

引用本文:

刘昶江,马鸿文,张盼. 富钾正长岩水热分解生成沸石反应热力学[J]. 物理化学学报, 2018, 34(2): 168-176, 10.3866/PKU.WHXB201707111

Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176, 10.3866/PKU.WHXB201707111.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201707111        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I2/168

图1  富钾正长岩粉体(YK-13)的X射线粉晶衍射图谱
Samplew/%
SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaOBaONa2OK2OP2O5LOITotal
YK-1366.260.0417.610.260.250.10.170.520.513.2410.380.040.2799.63
表1  富钾正长岩粉体的化学成分
Mineral
End-member
NameΔHf?/
(kJ?mol-1)
ΔGf?/
(kJ?mol-1)
103S?/
(kJ?K-1?mol-1)
a/(kJ?K-1?mol-1)105b/
(kJ?K-1?mol-1)
c/(kJ?K-1?mol-1)
KAlSi3O8Microcline-3975.33-3750.19214.30.4488-1.0075-1007.3
CaAl2Si2O8Anorthite-4232.70-4007.51200.50.37051.0010-4339.1
NaAlSi3O8Albite-3935.49-3711.91207.40.452-1.3364-1275.9
SiO2Quartz-910.70-856.4641.430.0929-0.0642-714.9
KFe3AlSi3O10(OH)2Annite-5144.23-4796.024180.8157-3.486119.8
KMg3AlSi3O10(OH)2Phlogopite-6214.95-5837.423260.7703-3.6939-2328.9
CaCO3Calcite-1207.88-1128.8192.50.14090.5029950.7
Fe3O4Magnetite-1114.51-1012.31146.90.2625-0.7205-1926.2
表2  矿物端员组分的热力学数据
Hydroxide polymerΔGf?/(kJ?mol?1)ΔHf?/(kJ?mol?1)CationRadius/nm
LiOH(c)?438.95?484.93Li+0.076
NaOH(c)?379.494?425.609Na+0.102
KOH(c)?379.08?424.764K+0.138
Rb(OH)2(c)?364.4?418.19Rb2+0.152
Mg(OH)2(c)?835.32?926.3Mg2+0.072
Ca(OH)2(c)?898.49?986.09Ca2+0.100
Sr(OH)2(c)?881.1?959Sr2+0.118
Ba(OH)2(c)?859.5?944.7Ba2+0.135
Al(OH)3(c)?1154.89?1293.13
Si(OH)4(SiO2?2H2Oam)?1324.66?1476.32
H2O(l)?237.18?285.84
表3  氢氧化物多面体的标准生成Gibbs自由能、标准生成焓及阳离子半径
Oxide polymerNa2OK2OAl2O3CaOMgOH2OSiO2
S?/(J?K?1?mol?1)149.55163.4511.0543.4051.9952.0045.60
V/(cm3?mol?1)73.4499.5295.3020.9015.570.0031.75
表4  氧化物多面体的标准熵
Oxide polymerNa2OK2OAl2O3CaOMgOH2OSiO2
a/(J?K?1?mol?1)55.6127.824117.34754.84047.83423.99923.500
10?3b/(J?K?2?mol?1)1114.9171412.752?1186.0461057.9891320.23366.295104.500
105c/(J?K?mol?1)0.1900.085?0.190?0.215?8.106?0.395?9.000
表5  氧化物多面体的Cp参数
ZeoliteFormulaΔGf?ΔHf?S?Cp, 298.15abc
Zeolite ANa96Al96Si96O384?216H2O-244081056-26540227223224.1420188.59915741.81620.937528-94927680
Ca-Zeolite ACa48Al96Si96O384?216H2O-245954880-26846160019423.1919379.09415704.7618.204984-96871680
Zeolite PNa6Al6Si10O32?12H2O-18300496-197774421572.791359.3461041.8651.627153-9473760
Ca-Zeolite PCa3Al6Si10O32?12H2O-18417610-199696501335.221305.5591038.5511.532779-11316300
AnalcimeNaAlSi2O6?H2O-3096336-3311947230.23198.307157.4790.2397305-1839480
WairakiteCaAl2Si4O12?2H2O-6231710-6687630371.16379.749314.1850.422533-3719460
HydroxycancriniteNa8Al6Si6O24(OH)2?2H2O-13483548-14291236991.451240.649787.4861.727415-5499400
GismonditeCaAl2Si2O8?4H2O-5005470-5450030431.48382.942315.1820.346123-1998420
表6  采用聚合多面体模型计算沸石的热力学参数
IonΔGf?ΔHf?S?CpV104a110-2a2105a3104a4c1104c2105ω
Na+a-262056-24046058.4537.93-1.117.70-9.5713.63-11.4176.12-12.481.38
K+a-282651-252338101.118.299.0614.90-6.1722.76-11.3530.98-7.500.81
OH-a-157403-230178-10.72-137.29-4.185.240.317.71-11.6517.38-43.327.22
Ca2+a-553160-543447-56.52-31.53-18.06-0.82-30.3622.18-10.3837.68-10.565.18
HSiO3-b-1016559-114664720.93-87.92512.45-2.1724.90-11.5534.12-30.626.49
表7  离子的热力学参数
Target product∑ΔGr/(kJ?mol-1)
160 ℃180 ℃200 ℃220 ℃240 ℃260 ℃280 ℃300 ℃
Analcime-3.38-3.14-2.77-2.31-1.71-0.910.101.37
Hydroxycancrinite-42.97-44.46-45.86-47.21-48.45-49.49-50.27-50.67
Zeolite A-14.49-14.36-14.09-13.69-13.09-12.21-11.02-9.4
Zeolite P-4.58-3.94-3.15-2.28-1.200.091.603.40
表8  富钾正长岩粉体生成钠型沸石的Gibbs自由能
图2  不同浓度NaOH固相产物模拟结果
T/℃Equilibrium pressure/MPaEquilibrium pHEquilibrium solid product/g
BiotiteMagnetiteCalciteApatiteAnalcimeK2Si2O5
2001.4511.20.900.380.220.0975.530.00
2202.1611.20.900.380.220.0975.520.00
2403.1211.100.900.370.220.0975.500.00
2604.3811.100.900.370.220.0975.460.00
2806.0011.100.900.370.220.0975.385.35
3008.0411.000.900.370.210.0975.159.82
表9  不同温度下平衡产物模拟结果
图3  不同NaOH浓度下产物的XRD图谱
图4  羟钙霞石(a, b)及方沸石(c, d)的SEM照片
Sample No.w/%η(K2O)/%
SiO2TiO2Al2O3Fe2O3MnOMgOBaOCaONa2OK2OP2O5LOI
HC-3524041.630.0626.260.010.000.080.620.8720.610.400.067.6597.4
ANA-2326051.22023.720.430.000.040.930.9613.570.440.047.6396.9
表10  富钾正长岩水热分解产物的XRF分析结果(wB, %)及相应条件下K2O溶出率(%)
1 Ma H. W. ; Su S. Q. ; Liu H. ; Yang X. ; Peng H. ; Yu Z. J. Earth. Sci. Front. 2010, 17 (1), 294.
马鸿文; 苏双青; 刘浩; 杨雪; 彭辉; 俞子俭. 地学前缘, 2010, 17 (1), 294.
2 Ma H. W. Potassic Cocks in China: Resource and Clean Utilization Techniques Beijing: Chemical Industry Press, 2010, 1- 625.
马鸿文. 中国富钾岩石:资源与清洁利用技术, 北京: 化学工业出版社, 2010, 1- 25.
3 Su S. Q. ; Yang J. ; Ma H. W. ; Zhang P. Ind. Miner. Process. 2014, (2), 46.
苏双青; 杨静; 马鸿文; 张盼. 化工矿物与加工, 2014, (2), 46.
4 Ma H. W. ; Yang J. ; Su S. Q. ; Liu M. T. ; Zheng H. ; Wang Y. B. ; Qi H. B. ; Zhang P. Acta Geol. Sin.-Engl. 2015, 89 (6), 2058.
doi: 10.1111/acgs.2015.89.issue-6
5 Lovat V. C. R. ; Sathy C. Zeolites 1993, 13, 524.
doi: 10.1016/0144-2449(93)90229-V
6 Liou J. G. ; Christian C. ; Martin F. New Zeal. J. Geol. Geop. 1991, 34 (3), 293.
doi: 10.1080/00288306.1991.9514467
7 Alekseyev V. A. ; Medvedeva L. S. ; Prisyagina N. I. ; Meshalkin S. S. ; Balabin A. I. Geochimica Cosmochim. Ac. 1997, 61 (6), 1125.
doi: 10.1016/S0016-7037(96)00405-X
8 Ma X. ; Yang J. ; Ma H. W. ; Liu C. J. ; Zhang P. Micropor. Mesopor. Mat. 2015, 201, 134.
doi: 10.1016/j.micromeso.2014.09.019
9 Yang J. ; Ma H. W. ; Zeng C. ; Liu C. J. ; Ma X. ; Luo Z. ; Wang S. J. Acta Minera. Sin. 2016, 36 (1), 38.
doi: 10.16461/j.cnki.1000-4734.2016.01.007
杨静; 马鸿文; 曾诚; 刘昶江; 马玺; 罗征; 王时健. 矿物学报, 2016, 36 (1), 38.
doi: 10.16461/j.cnki.1000-4734.2016.01.007
10 Yuan J. Y. ; Yang J. ; Ma H.W. ; Liu C.J. ; Zhao C. L. RSC Advances 2016, 6 (59), 54503.
doi: 10.1039/c6ra08080d
11 Ma H. W. Introduction to Thermodynamics in Crystalline Petrology, 2nd ed Beijing: Higher Education Press, 2001, 1- 22.
马鸿文. 结晶岩热力学概论, 第2版 北京: 高等教育出版社, 2001, 1- 22.
12 OLI Systems Inc. A Guide to Using OLI Analyzer (Version 9.2), 2015.
13 Holland T. J. B. J. Metamorphic Geol. 1990, 8 (1), 89.
doi: 10.1111/j.1525-1314.1990.tb00458.x
14 Holland T. J. B. ; Powell R. J. Metamorphic Geol. 2011, 29 (3), 333.
doi: 10.1111/j.1525-1314.2010.00923.x
15 Veeillard P. Eur. J. Mineral. 2010, 22 (6), 823.
doi: 10.1127/0935-1221/2010/0022-2026
16 Arthur R. ; Sasamoto H. ; Walker C. ; Yui M. Clay and Clay Minerals 2011, 59 (6), 626.
doi: 10.1346/CCMN.2011.0590608
17 Shock E. L. ; Helgeson H. C. Geochimica Cosmochim. Ac. 1988, 52 (8), 2009.
doi: 10.1016/0016-7037(88)90181-0
18 Sverjensky D. A. ; Shock E. L. ; Helgeson H. C. Geochimica Cosmochim. Ac. 1997, 61 (7), 1359.
doi: 10.1016/S0016-7037(97)00009-4
19 Wang P. ; Anderko A. ; Young R. D. Fluid Phase Equilibr. 2002, 203 (1), 141.
doi: 10.1016/S0378-3812(02)00178-4
20 Wang P. ; Springer R. D. ; Anderko A. ; Young R. D. Fluid Phase Equilibr. 2004, 222-223, 11.
doi: 10.1111/j.1525-1314.2010.00923.x
21 Xu R. R. ; Pang W. Q. ; Huo Q. S. Molecular Sieve and Porous Materials Chemistry, 2nd Beijing: Science Press, 2014, 117- 131.
徐如人; 庞文琴; 霍启升. 分子筛与多孔材料化学, 第二版 北京: 科学出版社, 2014, 117- 131.
22 Wajima T. Micropor. Mesopor. Mat. 2016, 232, 77.
doi: 10.1016/j.micromeso.2016.01.020
[1] 薛腾,董黎路,张颖,吴海虹. 小晶粒ZSM-5沸石的绿色、经济性合成[J]. 物理化学学报, 2018, 34(8): 920-926.
[2] 周智华,夏书梅,何良年. 绿色催化二氧化碳、炔丙醇和亲核试剂的三组分反应[J]. 物理化学学报, 2018, 34(8): 838-844.
[3] 吴广新,彭望君,张捷宇. 金属粉末的吸氢统计热力学模型[J]. 物理化学学报, 2017, 33(6): 1108-1113.
[4] 张婷,沈杰. 含酯基Gemini表面活性剂在有机醇-水体系中的胶束热力学及聚集行为[J]. 物理化学学报, 2017, 33(4): 795-802.
[5] 肖明,黄在银,汤焕丰,陆桑婷,刘超. Ag3PO4表面热力学性质及光催化原位过程热动力学的晶面效应[J]. 物理化学学报, 2017, 33(2): 399-406.
[6] 于海洋,王昉,刘其春,马青玉,顾正桂. 新型丝素蛋白膜的结构和热分解动力学机理[J]. 物理化学学报, 2017, 33(2): 344-355.
[7] 程昉,王汉奇,许旷,何炜. 基于二硫代氨基甲酸盐自组装的糖芯片制备与表征[J]. 物理化学学报, 2017, 33(2): 426-434.
[8] 颜稔,赖璐,许子强,蒋风雷,刘义. 量子点与蛋白质相互作用热力学[J]. 物理化学学报, 2017, 33(12): 2377-2387.
[9] 荆鹏飞,刘慧君,张勤,胡胜勇,雷兰林,冯志远. 联苯甲酰桥联β-环糊精吸附U(VI)的动力学和热力学[J]. 物理化学学报, 2016, 32(8): 1933-1940.
[10] 谭天,杨佳慧,朱春华,王官武,陈家富,苏吉虎. 利用原位变温EPR研究富勒烯双体笼间的弱C―C键[J]. 物理化学学报, 2016, 32(8): 1929-1932.
[11] 姜涛,彭述明,李梅,裴婷婷,韩伟,孙杨,张密林. Pr(Ⅲ)离子在LiCl-KCl熔体中Bi膜W电极上的电化学行为[J]. 物理化学学报, 2016, 32(7): 1708-1714.
[12] 赵岩,敖银勇,陈建,宋宏涛,黄玮,彭静. 基于密度泛函理论研究锂-冠醚复合物的结构和热力学参数[J]. 物理化学学报, 2016, 32(7): 1681-1690.
[13] 郭清莲,何欢,潘凌立,刘义. BCBP与牛血清白蛋白相互作用热力学[J]. 物理化学学报, 2016, 32(6): 1383-1390.
[14] 何甜,岳可芬,陈三平,周春生,晏妮. 三个不同穿插的锌配合物的合成、结构和热动力学分析[J]. 物理化学学报, 2016, 32(6): 1397-1403.
[15] 安保林,杨富方,杨震,段远源,于养信. 在确定的热力学状态下测量气体导热系数与黏度[J]. 物理化学学报, 2016, 32(5): 1129-1133.