Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (2): 177-184    DOI: 10.3866/PKU.WHXB201707121
论文     
基于氨基与表面乙烯砜基反应动力学调控配基表面密度
程昉1,2,*(),李明洋1,2,何炜1,3,王汉奇1,2
1 大连理工大学精细化工国家重点实验室,辽宁大连116023
2 大连理工大学制药科学与技术学院,辽宁大连116023
3 大连理工大学化工学院,辽宁大连116023
Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups
Fang CHENG1,2,*(),Mingyang LI1,2,Wei HE1,3,Hanqi WANG1,2
1 State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
2 School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
3 School of Chemical Engineering, Dalian University of Technology, Dalian 116023, Liaoning Province, P. R. China
 全文: PDF(1938 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

配基表面密度可控为定量研究生物分子相互作用提供了精准的分子基础。然而,经典混合自组装的方法控制配基密度对于不同自组装体系不具有普适性。本文报道了一种基于表面乙烯砜基反应动力学的配基表面密度调控方法。以-二(羧甲基)-L-赖氨酸(ab-NTA)为生物配基模型,对该表面反应进行了催化剂筛选并利用X射线光电子能谱(XPS)和表面膜电位对该表面反应进行了表征。采用静态水接触角的方法对表面反应的动力学进行了定量表征,计算得到反应速率常数为0.0012 min-1。采用表面等离子体共振(SPR)分析了该生物功能表面结合组氨酸标签蛋白(SA-6His)的能力,结果表明该表面比传统NHS-NTA表面具有更高的蛋白结合量和结合强度。通过控制反应时间和催化剂种类制备了四种配基密度不同的生物功能表面,并利用SPR对四种表面进行了蛋白质静态吸附实验。实验结果表明通过控制反应时间和催化剂类型均能够实现配基表面密度的调控,并且可以实现表面多价态的调控。

关键词: 表面催化乙烯基砜ab-NTA密度控制SPR多价态    
Abstract:

Control over the ligand surface density provides an accurate molecular basis for the quantitative study of biomolecular interactions. However, the classic hybrid self-assembly method lacks general applicability toward different self-assembly systems. In this paper, we report a new method based on the reaction kinetics of vinyl sulfone groups presented on surface to control the surface ligand density. , -bis(carboxymethyl)-L-lysine (ab-NTA) was selected as the model biological ligand and the catalyst for surface reaction was screened. The surface reaction was characterized by X-ray photoelectron spectroscopy (XPS) and the surface membrane potential. Static water contact angle was used to quantify the kinetics of the surface reaction, and calculations showed that the rate constant was 0.0012 min-1. The ability of the biological functional surface to bind a histidine labeling protein (SA-6His) was investigated by surface plasmon resonance (SPR). The results show that such a surface has a higher protein binding quantity and binding strength than the traditional NHS-NTA surface. Four biological functional surfaces with different ligand densities were prepared by controlling the reaction time and catalyst, and the protein static adsorption of these surfaces was analyzed by SPR. The results show that ligand density and multivalence of the biological functional surface can be controlled by modulating the reaction time and catalyst.

Key words: Surface catalysis    Vinyl sulfone    ab-NTA    Density control    SPR    Multivalent
收稿日期: 2017-06-05 出版日期: 2017-07-12
中图分类号:  O643  
基金资助: 中央高校基本科研业务费(DUT16RC(3)019);青年千人计划资助项目
通讯作者: 程昉     E-mail: ffcheng@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程昉
李明洋
何炜
王汉奇

引用本文:

程昉,李明洋,何炜,王汉奇. 基于氨基与表面乙烯砜基反应动力学调控配基表面密度[J]. 物理化学学报, 2018, 34(2): 177-184, 10.3866/PKU.WHXB201707121

Fang CHENG,Mingyang LI,Wei HE,Hanqi WANG. Control of the Ligand Surface Density through Reaction Kinetics of Amino and Surface Vinyl Sulfone Groups. Acta Phys. -Chim. Sin., 2018, 34(2): 177-184, 10.3866/PKU.WHXB201707121.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201707121        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I2/177

图Scheme 1  表面修饰示意图
图1  催化剂化学结构
图2  (a)不同催化剂条件下接触角变化曲线;(b)不同吡啶二甲酸浓度下接触角变化曲线
图3  吡啶二甲酸作催化剂条件下的(a)接触角照片和(b)接触角变化趋势
图4  VS (乙烯砜基)基团表面覆盖度的自然对数
图5  表面膜电位
图6  (1) VS表面和(2)ab-NTA表面的XPS表征结果
图7  蛋白质与VS-ab-NTA表面的SPR结合曲线
图8  基于VS(a)和NHS(b)的ab-NTA表面的等温吸附曲线
106Kd/mol-1Rmax/(refraction unit)
VS surface0.6693
NHS surface1.01457
表1  基于VS和NHS的ab-NTA表面的Kd和Rmax
图9  吡啶二甲酸催化不同时间和三苯基膦催化的表面的等温吸附曲线
CatalystTime/h106Kd/mol-1Rmax/(refraction unit)
10.51.13183
120.62504
1120.60693
2120.58282
表2  不同反应时间和催化剂催化的ab-NTA表面的Kd和Rmax
1 Yuan P. X. ; Deng S. Y. ; Yao C. G. ; Wan Y. ; Cosnier S. ; Shan D. Biosens. Bioelectron. 2017, 89, 319.
doi: 10.1016/j.bios.2016.07.031
2 Cabanas-Danes J. ; Rodrigues E. D. J. Am. Chem. Soc. 2014, 136, 12675.
doi: 10.1021/ja505695w
3 Nakamura I. ; Horikawa Y. ; Makino A. ; Sugiyama J. ; Kimura S. Biomacromolecules 2011, 12, 785.
doi: 10.1021/bm101394j
4 Schartner J. ; Hoeck N. Anal. Chem. 2015, 87, 7467.
doi: 10.1021/acs.analchem.5b01823
5 Cheng F. ; Li M. Y. ; Wang H. Q. ; Lin D. Q. ; Qu J. P. Langmuir 2015, 31, 3422.
doi: 10.1021/la5044987
6 Rowley J. A. ; Mooney D. J. J. Biomed. Mater. Res. 2002, 60, 217.
doi: 10.1002/jbm.1287
7 Shoffstall A. J. ; Everhart L. M. Biomacromolecules 2013, 14, 2790.
doi: 10.1021/bm400619v
8 Chen X. W. ; Pei D. H. J. Comb. Chem. 2009, 11, 604.
doi: 10.1021/cc9000168
9 Shao Q. ; Jiang S. Y. J. Phys. Chem. B 2014, 118, 7630.
doi: 10.1021/jp5027114
10 Tomohiro H. ; Kenji W. J. Phys. Chem. C 2009, 113, 18795.
doi: 10.1021/jp906494u
11 Subramanian A. ; Irudayaraj J. ; Ryan T. Sensor. Actuat. B: Chem. 2006, 114, 192.
doi: 10.1016/j.snb.2005.04.030
12 Ma H. ; Wells M. ; Beebe T. P. Jr. ; Chilkoti A. Adv. Funct. Mater. 2006, 16, 640.
doi: 10.1002/adfm.200500426
13 Bain C. D. ; Whitesides G. M. J. Am. Chem. Soc. 1988, 110, 6560.
doi: 10.1021/ja00227a044
14 Bohmler J. ; Ponche A. ; Anselme K. ; Ploux L. ACS. Appl. Mater. Inter. 2013, 5, 10478.
doi: 10.1021/am401976g
15 Tomohiro F. ; Yoshiko M. Bioconjugate Chem. 2010, 21, 1079.
doi: 10.1021/bc100053x
16 Liu Y. T. ; Yan L. ; Sun L. M. ; Li H. Q. ; Li H. H. Chem. Eng. (China) 2014, 42, 69.
doi: 10.3969/j.issn.1005-9954.2014.03.014
刘玉婷; 颜莉; 孙立民; 李慧琴; 李海华. 化学工程, 2014, 42, 69.
doi: 10.3969/j.issn.1005-9954.2014.03.014
17 Cheng F. ; Wang H. Q. ; Xu K. ; He W. Acta Phys. -Chim. Sin. 2017, 33, 426.
doi: 10.3866/PKU.WHXB201609291
程昉; 王汉奇; 许旷; 何炜. 物理化学学报, 2017, 33, 426.
doi: 10.3866/PKU.WHXB201609291
18 Eugene W. L. ; Chan M. N. Y. J. Am. Chem. Soc. 2006, 128, 15542.
doi: 10.1021/ja065828l
19 Zhang S. ; Maidenberg Y. ; Luo K. ; Koberstein J. T. Langmuir 2014, 30, 6071.
doi: 10.1021/la501233w
20 Wang H. Q. ; Cheng F. ; Li M. Y. ; Peng W. ; Qu J. P. Langmuir 2015, 31, 3413.
doi: 10.1021/la504087a
21 Esteves A. P. ; Silva M. E. ; Rodrigues L.M. ; Oliveira-Campos A. M. F. ; Hrdina R. Tetrahedron Lett. 2007, 48, 9040.
doi: 10.1016/j.tetlet.2007.10.077
22 Wang C. ; Qi C. Z. Tetrahedron 2013, 69, 5348.
doi: 10.1016/j.tet.2013.04.123
23 Cassie A. B. D. ; Baxter S. Trans. Faraday Soc. 1944, 40, 546.
doi: 10.1039/tf9444000546
24 Kim E. J. ; Chung B. H. ; Lee H. J. Anal. Chem. 2012, 84, 10091.
doi: 10.1021/ac302584d
25 Maalouli N. ; Gouget-Laemmel A. C. Langmuir 2011, 27, 5498.
doi: 10.1021/la2005437
26 Pei J. ; Tang Y. ; Xu N. ; Lu W. ; Xiao S. J. ; Liu J. N. Sci. China. Chem. 2010, 54, 526.
doi: 10.1007/s11426-010-4128-3
27 Shin-ichiro I. ; Takashi K. J. Electroanal. Chem. 1997, 428, 33.
doi: 10.1016/S0022-0728(97)00006-5
28 Suman L. ; Jacob P. J. Am. Chem. Soc. 2005, 127, 10205.
doi: 10.1021/ja050690c
[1] 程昉,王汉奇,许旷,何炜. 基于二硫代氨基甲酸盐自组装的糖芯片制备与表征[J]. 物理化学学报, 2017, 33(2): 426-434.
[2] 余兴龙;魏星;王鼎新;定翔;廖玮;赵新生. 蛋白质微阵列SPR实时相位检测[J]. 物理化学学报, 2005, 21(08): 888-892.
[3] 曹晨忠;袁华. 烯烃顺反异构的拓扑方法研究[J]. 物理化学学报, 2005, 21(04): 360-366.
[4] 郭明;邹建卫;赵文娜;商志才;俞庆森. 基于三维静电势参数研究C60溶解性的构效关系[J]. 物理化学学报, 2003, 19(05): 432-435.
[5] 陈崧哲;钟顺和. Cu/TiO2-NiO上光促表面催化CO2和H2O合成CH3OH反应规律[J]. 物理化学学报, 2002, 18(12): 1099-1103.
[6] 乔学斌;侯廷军;章威;徐筱杰. 应用反向传播神经网络预测化合物脑血分配系数[J]. 物理化学学报, 2002, 18(05): 385-388.
[7] 曾健青, 张镜澄, 钟炳. A+B2表面催化反应相变及自振荡的蒙特卡罗模拟[J]. 物理化学学报, 1998, 14(02): 103-108.