Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (2): 201-207    DOI: 10.3866/PKU.WHXB201707131
所属专题: 密度泛函理论中的化学概念特刊
论文     
Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects
GHARA Manas,CHATTARAJ Pratim K.*()
Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects
Manas GHARA,Pratim K. CHATTARAJ*()
 全文: PDF(1220 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

Density functional theory-based calculations have been carried out to study the bonding and reactivity in RB-AsR (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO) systems. Our calculations demonstrated that all the studied systems adopted bent geometry (∠R-B-As ≈ 180° and ∠B-As-R ≈ 90° or less). The reason for this bending was explained with the help of a valence-orbital model. The potential energy surfaces for three possible isomers of RB-AsR systems were also generated, indicating that the RB-AsR isomer was more stable than R2B-AsR when R=SiF3, CMe3, and H. The B-As bond character was analyzed using natural bond orbital (NBO) and Wiberg bond index (WBI) calculations. The WBI values for B-As bonds in F3SiB-AsSiF3 and HB-AsH were 2.254 and 2.209, respectively, indicating that this bond has some triple-bond character in these systems. While the B centers prefer nucleophilic attack, the As centers prefer electrophilic attack.

关键词: Density-functional theoryBent geometryWiberg bond indexReactivity    
Abstract:

Density functional theory-based calculations have been carried out to study the bonding and reactivity in RB-AsR (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO) systems. Our calculations demonstrated that all the studied systems adopted bent geometry (∠R-B-As ≈ 180° and ∠B-As-R ≈ 90° or less). The reason for this bending was explained with the help of a valence-orbital model. The potential energy surfaces for three possible isomers of RB-AsR systems were also generated, indicating that the RB-AsR isomer was more stable than R2B-AsR when R=SiF3, CMe3, and H. The B-As bond character was analyzed using natural bond orbital (NBO) and Wiberg bond index (WBI) calculations. The WBI values for B-As bonds in F3SiB-AsSiF3 and HB-AsH were 2.254 and 2.209, respectively, indicating that this bond has some triple-bond character in these systems. While the B centers prefer nucleophilic attack, the As centers prefer electrophilic attack.

Key words: Density-functional theory    Bent geometry    Wiberg bond index    Reactivity    Multiphilic descriptor
收稿日期: 2017-06-22 出版日期: 2017-07-13
通讯作者: CHATTARAJ Pratim K.     E-mail: pkc@chem.iitkgp.ernet.in
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
GHARA Manas
CHATTARAJ Pratim K.

引用本文:

GHARA Manas,CHATTARAJ Pratim K.. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. 物理化学学报, 2018, 34(2): 201-207, 10.3866/PKU.WHXB201707131

Manas GHARA,Pratim K. CHATTARAJ. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects. Acta Phys. -Chim. Sin., 2018, 34(2): 201-207, 10.3866/PKU.WHXB201707131.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201707131        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I2/201

Fig 1  Bonding scheme for the RB-AsR systems.
RB-AsR dB-As/? ∠R―B―As/(°) ∠B―As―R/(°) ΔEST(R-B)a ΔEST(R-As)b H-L gap/eV
H 1.796 179.8 47.0 28.74 -32.46 6.90
F 1.902 177.0 93.4 81.00 -30.77 5.39
OH 1.892 175.9 93.2 68.96 -21.78 5.91
CH3 1.840 174.9 95.5 38.42 -29.98 5.90
CMe3 1.841 174.2 94.7 37.07 -27.06 6.01
CF3 1.836 177.3 81.6 30.02 -31.63 6.46
SiF3 1.811 179.9 73.0 9.60 -30.67 6.65
BO 1.810 177.5 59.7 12.97 -30.15 6.11
Table 1  The geometrical parameters, singlet-triplet splitting energy of R-B (ΔEST(R-B)) and R-As (ΔEST(R-As)) and HOMO-LUMO gap (eV) at M06-2X/def2-TZVP lavel.
Fig 2  The optimized geometries of RB-AsR systems (R = H, F, OH, BO, CH3, , CF3, SiF3 and CMe3) at the M06-2X/def2-TZVP level.
Fig 3  Relative energy values for RB-AsR (R = F, OH, CF3, CH3, H, CMe3 BO and SiF3) in kcal·mol-1 calculated at the M06-2X/def2-TZVP level.
RB-AsR QB QAs WBI(B-As)
H ?0.268 0.227 2.209
F 0.621 0.469 1.798
OH 0.532 0.369 1.811
CH3 0.394 0.120 2.031
CMe3 0.469 0.114 2.073
CF3 0.272 0.197 2.012
SiF3 ?0.534 ?0.003 2.254
BO ?0.373 0.367 2.041
Table 2  The NPA charges on B and As centres (Q, a.u.) and Wiberg bond index (WBI) values of B-As bonds in RB-AsR (R=H, F, OH, CH3, CMe3, CF3, SiF3 and BO) at M06-2X/def2-TZVP level.
System BCP ρ(rc) ?2ρ(rc) G(rc) V(rc) -G(rc)/V(rc) H(rc)
HB-AsH B-As 0.157 -0.126 0.088 -0.207 0.424 -0.119
HB-AsH B-Ha 0.128 -0.097 0.053 -0.130 0.406 -0.077
FB-AsF B-As 0.137 -0.041 0.081 -0.173 0.471 -0.091
HOB-AsOH B-As 0.140 -0.057 0.081 -0.176 0.459 -0.095
H3CB-AsCH3 B-As 0.154 -0.086 0.090 -0.201 0.447 -0.111
Me3CB-AsCMe3 B-As 0.154 -0.092 0.088 -0.199 0.442 -0.111
F3CB-AsCF3 B-As 0.155 -0.077 0.093 -0.204 0.453 -0.112
F3SiB-AsSiF3 B-As 0.159 -0.117 0.090 -0.209 0.430 -0.119
OBB-AsBO B-As 0.156 -0.114 0.089 -0.206 0.431 -0.118
Table 3  Electron density descriptors (in a.u.) at the bond critical points (BCP) in between B and As atoms in RB-AsR (R = H, F, OH, CH3, CMe3, CF3, SiF3 and BO) at M06-2X/def2-TZVP level.
Fig 4  Plots of Laplacian of electron density (?2ρ(r)) of RB-AsR (R = H, F, OH, CH3, CMe3, CF3, SiF3 and BO) systems at M06-2X/def2-TZVP level. Green lines show the region with ?2ρ(r) > 0 and red lines show the region with ?2ρ(r) < 0). color online.
Molecule f+B f+As fB- fAs- ΔfB ΔfAs ΔωB ΔωAs
HB-AsH 0.319 0.599 0.302 0.674 0.017 -0.076 0.020 -0.086
H3CBAsCH3 0.491 0.221 0.252 0.556 0.239 -0.335 0.231 -0.324
Me3CBAsCMe3 0.518 0.160 0.346 0.460 0.172 -0.300 0.159 -0.278
HOBAsOH 0.382 0.385 0.207 0.616 0.175 -0.231 0.173 -0.228
FBAsF 0.430 0.424 0.219 0.649 0.211 -0.225 0.231 -0.246
F3CB-AsCF3 0.453 0.284 0.302 0.546 0.151 -0.261 0.186 -0.323
OBB-AsBO 0.262 0.395 0.317 0.534 -0.055 -0.139 -0.073 -0.185
F3SiB-AsSiF3 0.425 0.306 0.338 0.533 0.086 -0.227 0.110 -0.289
H3CB-AsF 0.462 0.343 0.287 0.543 0.175 -0.200 0.183 -0.209
H3CB-AsBO 0.307 0.339 0.213 0.602 0.093 -0.262 0.108 -0.304
H3CB-AsCF3 0.454 0.260 0.237 0.582 0.217 -0.322 0.236 -0.351
Me3CB-AsCF3 0.506 0.205 0.307 0.522 0.199 -0.318 0.211 -0.338
Me3CB-AsF 0.516 0.281 0.327 0.490 0.188 -0.209 0.190 -0.212
Me3CB-AsBO 0.335 0.297 0.255 0.553 0.080 -0.257 0.091 -0.292
FB-AsCH3 0.494 0.263 0.184 0.657 0.309 -0.394 0.313 -0.398
FB-AsCMe3 0.447 0.256 0.185 0.615 0.262 -0.359 0.257 -0.352
FB-AsOH 0.420 0.389 0.206 0.647 0.214 -0.258 0.224 1.746
OBB-AsCH3 0.455 0.226 0.340 0.483 0.114 -0.257 0.130 -0.293
OBB-AsCMe3 0.428 0.214 0.336 0.452 0.092 -0.238 0.102 -0.262
F3CB-AsCMe3 0.462 0.227 0.307 0.492 0.155 -0.264 0.167 -0.285
Table 4  Calculated local reactivity properties of some selected molecules calculated at the M06-2X/def2-TZVP level.
1 Power P. P. Chem. Rev 1999, 99, 3463.
doi: 10.1021/cr9408989
2 Bino A. ; Ardon M. ; Shirman E. Science 2005, 308, 234.
doi: 10.1126/science.1109965
3 Seidu I. ; Seth M. ; Ziegler T. Inorg. Chem 2013, 52, 8378.
doi: 10.1021/ic401149h
4 Danovich D. ; Bino A. ; Shaik S. J. Phys. Chem. Lett 2013, 4, 58.
doi: 10.1021/jz3016765
5 Lein M. ; Krapp A. ; Frenking G. J. Am. Chem. Soc 2005, 127, 6290.
doi: 10.1021/ja042295c
6 Sekiguchi A. ; Kinjo R. ; Ichinohe M. Science 2004, 305, 1755.
doi: 10.1126/science.1102209
7 Sasamori T. ; Hironaka K. ; Sugiyama T. ; Takagi N. ; Nagase S. ; Hosoi Y. ; Furukawa Y. ; Tokitoh N. J. Am. Chem. Soc 2008, 130, 13856.
doi: 10.1021/ja8061002
8 Stender M. ; Phillips A. D. ; Wright R. J. ; Power P. P. Angew. Chem., Int. Ed 2002, 41, 1785.
doi: 10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6
9 Sugiyama Y. ; Sasamori T. ; Hosoi Y. ; Furukawa Y. ; Takagi N. ; Nagase S. ; Tokitoh N. J. Am. Chem. Soc 2006, 128, 1023.
doi: 10.1021/ja057205y
10 Phillips A. D. ; Wright R. J. ; Olmstead M. M. ; Power P. P. J. Am. Chem. Soc 2002, 124, 5930.
doi: 10.1021/ja0257164
11 Pu L. ; Twamley B. ; Power P. P. J. Am. Chem. Soc 2000, 122, 3524.
doi: 10.1021/ja993346m
12 Wu P. C. ; Su M. D. Dalton Trans 2011, 40, 4253.
doi: 10.1039/C0DT00800A
13 Wu P. C. ; Su M. D. Inorg. Chem 2011, 50, 6814.
doi: 10.1021/ic200930v
14 Paetzold P. Adv. Inorg. Chem 1987, 31, 123.
doi: 10.1016/S0898-8838(08)60223-8
15 Petrie M. A. ; Shoner S. C. ; Dias H. V. R. ; Power P. P. Angew. Chem., Int. Ed. Engl 1990, 29, 1033.
doi: 10.1002/anie.199010331
16 Rivard E. ; Merrill W. A. ; Fettinger J. C. ; Power P. P. Chem. Commun 2006, 3800.
doi: 10.1039/b609748k
17 Mardones M. A. ; Cowley A. H. ; Contreras L. ; Jones R. A. J. Organomet. Chem 1993, 455.
doi: 10.1016/0022-328X(93)80411-4
18 Kerins M. C. ; Fitzpatrick N. J. ; Nguyen M. T. Polyhedron 1989, 8, 969.
doi: 10.1016/S0277-5387(00)86453-0
19 Watts J. D. ; Zant L. C. V. Chem. Phys. Lett 1996, 251, 119.
doi: 10.1016/0009-2614(96)00076-0
20 Lu J. S. ; Yanga M. C. ; Su M. D. PhysChemChemPhys 2017, 19, 8026.
doi: 10.1039/c7cp00421d
21 Lu J. S. ; Su S. H. ; Yanga M. C. ; Wen X. T. ; Xie J. Z. ; Su M. D. Organometallics 2016, 35, 3924.
doi: 10.1021/acs.organomet.6b00659
22 Lu J. S. ; Yanga M. C. ; Su M. D. ACS Omega 2017, 2, 1172.
doi: 10.1021/acsomega.7b00113
23 Chattaraj P. K. ; Rivas N. G. ; Matus M. H. ; Galvan M. J. Phys. Chem. A 2005, 109, 25.
doi: 10.1021/jp045319a
24 Parr R. G. ; Yang W. Density Functional Theory of Atoms and Molecules Oxford: Oxford University Press, 1989.
25 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev 2003, 103, 1793.
doi: 10.1021/cr990029p
26 Parr R. G. ; Szentpaly L. v. ; Liu S. J. Am. Chem. Soc 1999, 121, 1922.
doi: 10.1021/ja983494x
27 Chattaraj P. K. ; Sarkar U. ; Roy D. R. Chem. Rev 2006, 106, 2065.
doi: 10.1021/cr078014b
28 Parr R. G. ; Donnelly R. A. ; Levy M. ; Palke W. E. J. Chem. Phys 1978, 68, 3801.
doi: 10.1063/1.436185
29 Parr R. G. ; Pearson R. G. J. Am. Chem. Soc 1983, 105, 7512.
doi: 10.1021/ja00364a005
30 Chattaraj, P. K. ; Parr, R. G. Density functional theory of Chemical Hardness in Chemical Hardness (Structure and Bonding) Vol. 80; Sen, K. D., Mingos, D. M. P. Eds. ; Springer: Berlin, 1993.
31 Chattaraj P. K. ; Giri S. ; Duley S. J. Phys. Chem. Lett 2010, 1, 1064.
doi: 10.1021/jz1001117
32 Sanderson R. T. Science 1951, 114, 670.
doi: 10.1126/science.114.2973.670
33 Datta D. J. Phys. Chem 1986, 90, 4216.
doi: 10.1021/j100408a076
34 Szentpály L. V. J. Phys. Chem. A 2015, 119, 1715.
doi: 10.1021/jp5084345
35 Szentpály L. V. J. Mol. Model 2017, 23, 217.
doi: 10.1007/s00894-017-3383-z
36 Posthumus K. Rec. Trav. Chim 1933, 52, 25.
37 Parr R. G. ; Yang W. J. Am. Chem. Soc 1984, 106, 4049.
doi: 10.1021/ja00326a036
38 Yang W. ; Mortier W. J. J. Am. Chem. Soc 1986, 108, 5708.
doi: 10.1021/ja00279a008
39 Chattaraj P. K. ; Maiti B. ; Sarkar U. J. Phys. Chem. A 2003, 107, 4973.
doi: 10.1021/jp034707u
40 Roy D. R. ; Parthasarathi R. ; Padmanabhan J. ; Sarkar U. ; Subramanian V. ; Chattaraj P. K. J. Phys. Chem. A 2006, 110, 1084.
doi: 10.1021/jp053641v
41 Morell C. ; Grand A. ; Toro-Labbé A. J. Phys. Chem. A 2005, 109, 205.
doi: 10.1021/jp046577a
42 Morell C. ; Grand A. ; Toro-Labbe A. Chem. Phys. Lett 2006, 425, 342.
doi: 10.1016/j.cplett.2006.05.003
43 Padmanabhan J. ; Parthasarathi R. ; Elango M. ; Subramanian V. ; Krishnamoorthy B. S. ; Gutierrez-Oliva S. ; Toro-Labbé A. ; Roy D. R. ; Chattaraj P. K. J. Phys. Chem. A 2007, 111, 37.
doi: 10.1021/jp0718909
44 Chattaraj P. K. ; Chakraborty A. ; Giri S. J. Phys. Chem. A 2009, 113, 10068.
doi: 10.1021/jp904674x
45 Zhao Y. ; Truhlar D. G. Theor. Chem. Account 2006, 120, 215.
doi: 10.1007/s00214-007-0310-x
46 Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; et al. Gaussian 09, Revision C. 01; Gaussian Inc. : Wallingford CT, 2010.
47 Reed A. E. ; Curtiss L. A. ; Weinhold F. Chem. Rev 1988, 88, 899.
doi: 10.1021/cr00088a005
48 Reed A. E. ; Weinstock R. B. ; Weinhold F. J. Chem. Phys 1985, 83, 735.
doi: 10.1063/1.449486
49 Wiberg K. B. Tetrahedron 1968, 24, 1083.
doi: 10.1016/0040-4020(68)88057-3
50 Bader R. F. W. Atoms in Molecules: A Quantum Theory Clarendon Press: Oxford, UK, 1990.
51 Lu T. ; Chen F. W. J. Comput. Chem 2012, 33, 580.
doi: 10.1002/jcc.22885
52 Pyykko P. ; Desclaux J. P. Acc. Chem. Res 1979, 12, 276.
doi: 10.1021/ar50140a002
53 Pyykko P. Chem. Rev 1988, 88, 563.
doi: 10.1021/cr00085a006
[1] OROZCO-VALENCIA Ulises,GÁZQUEZ José L.,VELA Alberto. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. 物理化学学报, 2018, 34(6): 692-698.
[2] FRANCO-PÉREZ Marco,GÁZQUEZ José L.,AYERS Paul W.,VELA Alberto. Thermodynamic Dual Descriptor[J]. 物理化学学报, 2018, 34(6): 683-391.
[3] VON SZENTPÁLY László. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. 物理化学学报, 2018, 34(6): 675-682.
[4] CÁRDENAS Carlos,MUÑOZ Macarena,CONTRERAS Julia,AYERS Paul W.,GÓMEZ Tatiana,FUENTEALBA Patricio. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. 物理化学学报, 2018, 34(6): 631-638.
[5] NALEWAJSKI Roman F. Chemical Reactivity Description in Density-Functional and Information Theories[J]. 物理化学学报, 2017, 33(12): 2491-2509.
[6] MOHAMED IMRAN P. K., SUBRAMANI K.. L-鸟氨酸及其取代衍生物的结构和性质分析[J]. 物理化学学报, 2009, 25(11): 2357-2365.