Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (2): 219-226    DOI: 10.3866/PKU.WHXB201707173
论文     
碳布负载的缺氧型Na2Ti3O7纳米带阵列作为高性能柔性钠离子电池负极材料
张熙悦1,黄雅兰1,3,吴树炜2,曾银香1,于明浩1,程发良3,卢锡洪1,2,*(),童叶翔1,*()
1 中山大学化学学院,生物无机和合成化学重点实验室,广州510275
2 南开大学,高级能源材料化学(教育部)重点实验室,天津300071
3 东莞理工学院,广东省先进纳米材料技术研究中心,广东东莞523808
Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries
Xiyue ZHANG1,Yalan HUANG1,3,Shuwei WU2,Yinxiang ZENG1,Minghao YU1,Faliang CHENG3,Xihong LU1,2,*(),Yexiang TONG1,*()
1 MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
2 Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education), Nankai University, Tianjin 300071, P. R. China
3 Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, Dongguan University of Technology, Dongguan 523808, Guangdong Province, P. R. China
 全文: PDF(2661 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

作为锂离子电池的理想替代品,钠离子电池因具有能源储备丰富、成本低廉等优点而受到人们的广泛关注。柔性便携式电子产品的发展亟需柔性储能器件的研制。因此,发展一种廉价、高性能的柔性钠离子电池负极材料成了科研工作者的共同目标。在此项工作中,我们通过简单的水热合成和热还原法发展了一种以柔性碳布为基底,与缺氧型的Na2Ti3O7纳米带(NTO)构成三维阵列结构的新型柔性钠离子电池负极材料。复合材料(R-NTO/CC)的导电性和活性位点得到提高,电化学性能也大幅提升,在200 mA·cm-2的电流密度下,实现100 mAh·cm-2的面积比容量,且经过200次循环后仍保留最初电容值的80%。此外,这种电极还具有优良的倍率性能,当电流密度提高到400 mA·cm-2时,仍保持69.7 mAh·cm-2的面积比容量,是未引入氧空位材料的三倍之多。这种三维缺氧的电极材料可有效提高载流子浓度,缩短离子传输通道,从而大幅提升电极的电化学性能。此工作为设计合成高储钠性能的新型的负极材料提供了一种实用有效的策略。

关键词: 缺氧型Na2Ti3O7柔性负极材料钠离子电池    
Abstract:

Sodium ion batteries (SIBs), a promising substitute for lithium ion batteries (LIBs), have attracted extensive attention due to the abundance and low cost of sodium resources. In addition, flexible sodium-ion batteries may be able to satisfy the demands of large-scale energy storage applications for portable, wearable, and flexible electronics. Compared to the development of cathode materials, the progress on anode materials has been relatively slow. Therefore, the exploration of low-cost anode materials with high Na+ storage capacity is very important. Herein, we present oxygen-deficient Na2Ti3O7 nanobelts grown on carbon cloth (CC) as a promising novel flexible anode material for SIBs. Free-standing Na2Ti3O7 nanobelts with oxygen vacancies were directly grown on CC through a simple hydrothermal and thermal reduction process. Benefiting from the improved conductivity and increased active sites after the introduction of oxygen vacancies, the new material exhibits a high reversible capacity of 100 mAh·cm-2 at 200 mA·cm-2, with almost 80% capacitance retention after 200 cycles. When the current density was increased to 400 mA·cm-2, a high capacity of 69.7 mAh·cm-2 was achieved, which is three times that of bare Na2Ti3O7 nanobelts on CC. This 3D oxygen-deficient electrode can significantly promote the transport of Na+ ions and electrons, leading to remarkably improved electrochemical properties. Furthermore, this work constitutes a promising strategy to rationally design and fabricate novel Na2Ti3O7-based anodes with enhanced capacitive behavior, which hold great promise for energy storage/conversion devices, facilitating the large-scale implementation of high-performance flexible SIBs.

Key words: Oxygen-deficient    Na2Ti3O7    Flexible    Anode    Sodium ion battery
收稿日期: 2017-06-06 出版日期: 2017-07-17
中图分类号:  O646  
基金资助: 国家重点研发计划(2016YFA0202604);国家自然科学基金(2143306);广东省杰出青年科学基金(2014A0306048);广东省特支计划科技创新青年拔尖人才项目(2015TQ01C205);广东省应用型科技研发专项资金项目(2015B090927007);广州市珠江科技新星项目(201610010080);广州市科技计划项目(201604010124);江苏省能量转换材料与技术重点实验室开放基金(MTEC-2015M05)
通讯作者: 卢锡洪,童叶翔     E-mail: luxh6@mail.sysu.edu.cn;chedhx@mail.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张熙悦
黄雅兰
吴树炜
曾银香
于明浩
程发良
卢锡洪
童叶翔

引用本文:

张熙悦,黄雅兰,吴树炜,曾银香,于明浩,程发良,卢锡洪,童叶翔. 碳布负载的缺氧型Na2Ti3O7纳米带阵列作为高性能柔性钠离子电池负极材料[J]. 物理化学学报, 2018, 34(2): 219-226.

Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinca, 2018, 34(2): 219-226.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201707173        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I2/219

Fig 1  (a, b) SEM images, (c) TEM image, (d) elemental mapping images and (e, f) HRTEM images of the as-prepared R-NTO/CC sample. (g) XRD profiles of R-NTO, NTO, R-NTO/CC and NTO/CC samples.
Fig 2  (a) Raman spectra and (b) XPS survey spectra of the R-NTO/CC and NTO/CC samples. (c) Overlay of normalized Ti 2p core level XPS spectra of R-NTO/CC (red solid line) and NTO/CC (green dashed line), together with their difference spectrum ("R-NTO/CC" minus "NTO/CC"). (d) Core level O 1s spectra of R-NTO/CC and NTO/CC samples. Profiles of R-NTO, NTO, R-NTO/CC and NTO/CC samples.
Fig 3  Representative cyclic voltammetry (CV) curves of R-NTO/CC obtained at a scan rate of 1 mV·s-1.
Fig 4  (a) Rate capacity of NTO/CC and R-NTO/CC and corresponding Coulombic efficiency. (b) Cycling performance collected for NTO/CC and R-NTO/CC at 200mA cm-2. (c) EIS spectra of the R-NTO/CC and NTO/CC before and after cycle. (d) Specific energy gap after Kubelka-Munk treatment of the diffuse reflectance spectroscopy (DRS).
1 Xiao Y. M. ; Wu J. H. ; Yue G. T. ; Lin J. M. ; Huang M. L. ; Fan L. Q. ; Lan Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 578.
doi: 10.3866/PKU.WHXB201201032
肖尧明; 吴季怀; 岳根田; 林建明; 黄妙良; 范乐庆; 兰章. 物理化学学报, 2012, 28 (3), 578.
doi: 10.3866/PKU.WHXB201201032
2 Xia K. L. ; Jian M. Q. ; Zhang Y. Y. Acta Phys. -Chim. Sin. 2016, 32 (10), 2427.
doi: 10.3866/PKU.WHXB201607261
夏凯伦; 蹇木强; 张莹莹. 物理化学学报, 2016, 32 (10), 2427.
doi: 10.3866/PKU.WHXB201607261
3 Zhuang L. Acta Phys. -Chim. Sin. 2017, 33, 655.
doi: 10.3866/PKU.WHXB201703093
庄林. 物理化学学报, 2017, 33, 655.
doi: 10.3866/PKU.WHXB201703093
4 Huang Z. L. ; Wang L. P. ; Mou C. X. ; Li J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1787.
doi: 10.3866/PKU.WHXB20140852
黄宗令; 王丽平; 牟成旭; 李晶泽. 物理化学学报, 2014, 30, 1787.
doi: 10.3866/PKU.WHXB20140852
5 Xu J. ; Yang D. Z. ; Liao X. Z. ; He Y. S. ; Ma Z. F. Acta Phys. -Chim. Sin. 2015, 31, 913.
doi: 10.3866/PKU.WHXB201503162
许婧; 杨德志; 廖小珍; 何雨石; 马紫峰. 物理化学学报, 2015, 31, 913.
doi: 10.3866/PKU.WHXB201503162
6 Zhang W. ; Liu Y. ; Chen C. ; Li Z. ; Huang Y. ; Hu X. Small 2015, 11 (31), 3822.
doi: 10.1002/smll.201500783
7 Lamuel David R. B. ; Singh G. ACS Nano 2014, 8 (2), 1759.
doi: 10.1021/nn406156b
8 Yuan S. ; Huang X. D. ; Ma H. ; Wang M. F. ; Zhang X. Adv. Mater. 2014, 26 (14), 2273.
doi: 10.1002/adma.201304469
9 Wang X. ; Li Y. ; Gao Y. ; Wang Z. ; Chen L. Nano Energy 2015, 13, 687.
doi: 10.1016/j.nanoen.2015.03.029
10 Zhang Y. ; Guo L. ; Yang S. Nanoscale 2015, 7, 14618.
doi: 10.1039/C5NR03076E
11 Senguttuvan P. ; Rousse G. ; Seznec V. ; Tarascon J. M. ; Palacín M. R. Chem. Mater. 2011, 23, 4109.
doi: 10.1021/cm202076g
12 Chen C. ; Wen Y. ; Hu X. ; Ji X. ; Yan M. ; Mai L. ; Hu P. ; Shan B. ; Huang Y. Nat. Commun. 2015, 6, 6929.
doi: 10.1038/ncomms7929
13 Naeyaert P. J. P. ; Avdeev M. ; Sharma N. ; Yahia H. B. ; Ling C. D. Chem. Mater. 2014, 26, 7067.
doi: 10.1021/cm5035358
14 Ni J. ; Fu S. ; Wu C. ; Maier J. ; Yu Y. ; Li L. Adv. Mater. 2016, 28, 2259.
doi: 10.1002/adma.201504412
15 Liao J. Y. ; Manthiram A. Nano Energy 2015, 18, 20.
doi: 10.1016/j.nanoen.2015.09.014
16 Doeff M. M. ; Cabana J. ; Shirpour M. J. Inorg. Organomet. Polym. Mater. 2013, 24, 5.
doi: 10.1007/s10904-013-9977-8
17 Rousse G. ; Arroyo-de Dompablo M. E. ; Senguttuvan P. ; Ponrouch A. ; Tarascon J. M. ; Palacín M. R. Chem. Mater. 2013, 25, 4946.
doi: 10.1021/cm4032336
18 Dong S. ; Shen L. ; Li H. ; Nie P. ; Zhu Y. ; Sheng Q. ; Zhang X. J. Mater. Chem. A 2015, 3, 21277.
doi: 10.1039/C5TA05714K
19 Andersson S. ; Wadsley A. D. Acta Cryst. 1961, 14, 1245.
doi: 10.1107/S0365110X61003636
20 Xu L. ; Xia J. ; Wang L. ; Qian J. ; Li H. ; Wang K. ; Sun K. ; He M. Chem. Eur. J. 2014, 20, 2244.
doi: 10.1002/chem.201304312
21 Wang W. ; Yu C. ; Lin Z. ; Hou J. ; Zhu H. ; Jiao S. Nanoscale 2013, 5, 594.
doi: 10.1039/C2NR32661B
22 Zou W. ; Li J. ; Deng Q. ; Xue J. ; Dai X. ; Zhou A. ; Li J. Solid State Ionics 2014, 262, 192.
doi: 10.1016/j.ssi.2013.11.005
23 Pan H. ; Lu X. ; Yu X. ; Hu Y. S. ; Li H. ; Yang X. Q. ; Chen L. Adv. Energy Mater. 2013, 3, 1186.
doi: 10.1002/aenm.201300139
24 Wang W. ; Yu C. ; Liu Y. ; Hou J. ; Zhu H. ; Jiao S. RSC. Adv. 2013, 3, 1041.
doi: 10.1039/C2RA22050D
25 Yin J. ; Qi L. ; Wang H. ACS. Appl. Mater. Interfaces 2012, 4, 2762.
doi: 10.1021/am300385r
26 Yan Z. ; Liu L. ; Shu H. ; Yang X. ; Wang H. ; Tan J. ; Zhou Q. ; Huang Z. ; Wang X. J. Power Sources 2015, 274, 8.
doi: 10.1016/j.jpowsour.2014.10.045
27 Fu S. ; Ni J. ; Xu Y. ; Zhang Q. ; Li L. Nano Lett. 2016, 16, 7.
doi: 10.1021/acs.nanolett.6b01805
28 Li Z. ; Shen W. ; Wang C. ; Xu Q. ; Liu H. ; Wang Y. ; Xia Y. J. Mater. Chem. A 2016, 4, 17111.
doi: 10.1039/C6TA08416H
29 Xie F. ; Zhang L. ; Su D. ; Jaroniec M. ; Qiao S. Z. Adv. Mater. 2017.
doi: 10.1002/adma.201700989
30 Lu X. ; Wang G. ; Xie S. ; Shi J. ; Li W. ; Tong Y. ; Li Y. Chem. Commun. 2012, 48, 7717.
doi: 10.1039/C2CC31773G
31 Chen C. ; Wang J. ; Zhao Q. ; Wang Y. ; Chen J. ACS. Energy Lett. 2016, 1, 1165.
doi: 10.1021/acsenergylett.6b00515
32 Zhang Y. ; Guo L. ; Yang S. Chem. Commun. 2014, 50, 14029.
doi: 10.1039/C4CC06451H
33 M K. H. ; Miyaji F. ; Kokubo T. ; Nakamura T. J. Mater. Sci. Mater. Med. 1997, 8, 341.
doi: 10.1023/A:1018524731409
34 Ma K. F. R. ; Sasaki T. ; Osada M. ; Bando Y. J. Phys. Chem. B 2005, 109, 6210.
doi: 10.1021/jp044282r
35 Dylla A. G. ; Xiao P. ; Henkelman G. ; Stevenson K. J. J. Phys. Chem. Lett. 2012, 3 (15), 2015.
doi: 10.1021/jz300766a
36 Liu C. ; Sun T. ; Wu L. ; Liang J. ; Huang Q. ; Chen J. ; Hou W. Appl. Catal. B: Environ. 2015, 170-171, 17.
doi: 10.1016/j.apcatb.2015.01.026
37 Tang Y. ; Tao J. ; Zhang Y. ; Wu T. ; Tao H. ; Bao Z. Acta Phys. -Chim. Sin. 2008, 24, 2191.
doi: 10.1016/S1872-1508(08)60082-0
汤育欣; 陶杰; 张焱焱; 吴涛; 陶海军; 包祖国. 物理化学学报, 2008, 24, 2191.
doi: 10.1016/S1872-1508(08)60082-0
38 Li X. ; Liu S. Acta Phys. -Chim. Sin. 2008, 24, 2019.
doi: 10.1016/S1872-1508(08)60079-0
39 Ko J. S. ; Doan-Nguyen V. V. ; Kim H. S. ; Muller G. A. ; Serino A. C. ; Weiss P. S. ; Dunn B. S. ACS. Appl. Mater. Interfaces 2017, 9, 1416.
doi: 10.1021/acsami.6b10790
40 Zhan X. ; Shirpour M. Chem. Commun. 2017, 53, 204.
doi: 10.1039/C6CC08901A
41 Ho C. K. ; Li C. Y. V. ; Chan K. Y. Ind. Eng. Chem. Res. 2016, 55, 10065.
doi: 10.1021/acs.iecr.6b01867
42 Rudola A. ; Saravanan K. ; Mason C. W. ; Balaya P. J. Mater. Chem. A 2013, 1, 2653.
doi: 10.1039/C2TA01057G
43 Ge Y. ; Jiang H. ; Zhu J. ; Lu Y. ; Chen C. ; Hu Y. ; Qiu Y. ; Zhang X. Electrochim. Acta 2015, 157, 142.
doi: 10.1016/j.electacta.2015.01.086
44 Rudola A. ; Saravanan K. ; Devaraj S. ; Gong H. ; Balaya P. Chem. Commun. 2013, 49, 3.
doi: 10.1039/C3CC44381G
45 Dong S. ; Shen L. ; Li H. ; Pang G. ; Dou H. ; Zhang X. Adv. Funct. Mater. 2016, 26, 3703.
doi: 10.1002/adfm.201600264
46 Xu X. ; Yan M. ; Tian X. ; Yang C. ; Shi M. ; Wei Q. ; Xu L. ; Mai L. Nano Lett. 2015, 15, 3879.
doi: 10.1021/acs.nanolett.5b00705
47 Zhang Z. J. ; Feng A. ; Sun X. Y. ; Guo K. ; Man Z. Y. ; Zhao J. T. J. Alloy. Compd. 2014, 592, 73.
doi: 10.1016/j.jallcom.2013.12.211
48 Yang Q. ; Chen L. ; Hu C. ; Wang S. ; Zhang J. ; Wu W. J. Alloy. Compd. 2014, 612, 301.
doi: 10.1016/j.jallcom.2014.05.193
49 Gu Y. ; Su X. ; Du Y. ; Wang C. Appl. Surf. Sci. 2010, 256, 5862.
doi: 10.1016/j.apsusc.2010.03.065
[1] 方磊,孙铭骏,曹昕睿,曹泽星. 类单晶硅结构Si(C≡C-C6H4-C≡C)4新材料的力学与光学性质:第一性原理研究[J]. 物理化学学报, 2018, 34(3): 296-302.
[2] 钱慧慧, 韩潇, 肇研, 苏玉芹. 柔性Pd@PANI/rGO纸阳极在甲醇燃料电池中的应用[J]. 物理化学学报, 2017, 33(9): 1822-1827.
[3] 杜惟实, 吕耀康, 蔡志威, 张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报, 2017, 33(9): 1828-1837.
[4] 赵立平, 孟未帅, 王宏宇, 齐力. 二硫化钼-碳复合材料用作钠离子电容电池负极材料[J]. 物理化学学报, 2017, 33(4): 787-794.
[5] 甄绪, 郭雪静. 三维介孔钴酸锌立方体的制备及其优异的储锂性能[J]. 物理化学学报, 2017, 33(4): 845-852.
[6] 牛晓叶, 杜小琴, 王钦超, 吴晓京, 张昕, 周永宁. AlN-Fe纳米复合薄膜:一种新型锂离子电池负极材料[J]. 物理化学学报, 2017, 33(12): 2517-2522.
[7] 彭勃, 徐耀林, Fokko M. Mulder. 磷烯包覆的高性能硅基锂离子电池负极材料[J]. 物理化学学报, 2017, 33(11): 2127-2132.
[8] 方永进, 陈重学, 艾新平, 杨汉西, 曹余良. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
[9] 唐艳平, 元莎, 郭玉忠, 黄瑞安, 王剑华, 杨斌, 戴永年. 镁热还原法制备有序介孔Si/C锂离子电池负极材料及其电化学性能[J]. 物理化学学报, 2016, 32(9): 2280-2286.
[10] 黄家骏, 董志军, 张旭, 袁观明, 丛野, 崔正威, 李轩科. 带状中间相沥青基石墨纤维结构对电化学性能的影响[J]. 物理化学学报, 2016, 32(7): 1699-1707.
[11] 黄威,邬春阳,曾跃武,金传洪,张泽. P2型钠离子电池正极材料Na0.66Mn0.675Ni0.1625Co0.1625O2的表面重构及其演变的电子显微表征[J]. 物理化学学报, 2016, 32(6): 1489-1494.
[12] 杨泽, 张旺, 沈越, 袁利霞, 黄云辉. 下一代能源存储技术及其关键电极材料[J]. 物理化学学报, 2016, 32(5): 1062-1071.
[13] 边绍伟, 许玲利, 郭美霞, 邵福, 刘思. 柔性复合织物电极Graphene/Cotton和MnO2/Graphene/Cotton的合成及在电化学电容器中的应用[J]. 物理化学学报, 2016, 32(5): 1199-1206.
[14] 李婷, 龙志辉, 张道洪. Fe2O3/rGO纳米复合物的制备及其储锂和储钠性能[J]. 物理化学学报, 2016, 32(2): 573-580.
[15] 夏凯伦, 蹇木强, 张莹莹. 纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J]. 物理化学学报, 2016, 32(10): 2427-2446.