Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (2): 185-193    DOI: 10.3866/PKU.WHXB201707175
论文     
聚乙烯亚胺对人血清白蛋白的构象和结合能力的影响
韦邦帜,郭志勇,王帆,黄爱民,马林*()
Effects of Polyethyleneimine on the Conformation and Binding Capability of Human Serum Albumin
Bangzhi WEI,Zhiyong GUO,Fan WANG,Aimin HUANG,Lin MA*()
 全文: PDF(1098 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

为了解基因载体材料聚乙烯亚胺(PEI)细胞毒性的分子作用机理,本文应用吸收光谱、荧光光谱、圆二色谱、动态光散射和zeta-电位测定分析平均相对分子量为1.8和25 kDa的PEI(记为PEI1.8k和PEI25k)对人血清白蛋白(HSA)构象的影响,同时以8-苯氨基萘-1-磺酸镁(ANS)和槲皮素为模型化合物,了解PEI对HSA结合能力的影响及机理。结果发现,PEI与HSA结合形成静态复合物,导致HSA流体动力学直径变小和分子内环境疏水性增强。PEI1.8k和低浓度的PEI25k引起HSA的a-螺旋结构增加,但是高浓度的PEI25k对HSA二级结构具有稳定作用。PEI对HSA结合能力的影响主要归因于PEI的竞争结合和PEI与HSA结合引起的蛋白质构象变化。PEI的竞争结合降低了HSA对ANS和槲皮素的结合效率,但是蛋白质的构象变化增强了HSA与ANS和槲皮素的结合能力。PEI与HSA的相互作用具有明显的分子尺寸效应,增加PEI的相对分子量可以增强对HSA构象和结合能力的影响。

关键词: 基因载体聚乙烯亚胺人血清白蛋白构象结合作用    
Abstract:

For a better understanding of the cytotoxicity of polyethyleneimine (PEI), which has long been considered as the "golden standard" for polymeric gene delivery carriers, on the molecular basis, UV-Vis absorption, fluorescence, circular dichroism, dynamic light scattering and zeta-potential measurements were conducted to reveal the interaction between the PEI of average molecular weight 1.8 and 25 kDa (denoted as PEI1.8k and PEI25k, respectively) and human serum albumin (HSA). The effects of interactions on the conformation of HSA and its binding capability to the model compounds, 8-anilino-1-naphthalenesulfonic acid (ANS) and quercetin, were also evaluated. PEI was found to bind to HSA and induce an alteration in the secondary and tertiary structures of the protein and its binding capability toward small compounds. The complex formation with PEI resulted in a more compact and hydrophobic conformation of HSA, accompanying an increase in α-helix content in the case of PEI1.8k and PEI25k at low concentrations. The binding efficacy of ANS and quercetin to HSA was reduced by competitive binding with PEI, however increased by the conformational change of the protein. Higher-molecular-weight PEI was found to interact with HSA more favorably. It was also more efficient in perturbing the conformation and the binding capability of the protein.

Key words: Gene carrier    Polyethyleneimine    Human serum albumin    Conformation    Binding capability
收稿日期: 2017-06-19 出版日期: 2017-07-17
中图分类号:  O641  
基金资助: 国家自然科学基金(21373062)
通讯作者: 马林     E-mail: malinzju@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韦邦帜
郭志勇
王帆
黄爱民
马林

引用本文:

韦邦帜,郭志勇,王帆,黄爱民,马林. 聚乙烯亚胺对人血清白蛋白的构象和结合能力的影响[J]. 物理化学学报, 2018, 34(2): 185-193.

Bangzhi WEI,Zhiyong GUO,Fan WANG,Aimin HUANG,Lin MA. Effects of Polyethyleneimine on the Conformation and Binding Capability of Human Serum Albumin. Acta Physico-Chimica Sinca, 2018, 34(2): 185-193.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201707175        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I2/185

图1  HSA在含PEI的PBS缓冲液(pH 7.4)中的吸收光谱
图2  PBS缓冲液(pH 7.4)中HSA酰胺基团最大吸收波长λmax (实线)和最大吸收强度Amax (虚线)随着PEI浓度的变化关系
图3  HSA-PEI25k溶液280 nm (■)和500 nm (○)吸光度随着溶液中PEI25k浓度的变化关系
图4  BS缓冲液(pH 7.4)中HSA的zeta-电位随着PEI浓度的变化关系
图5  HSA-PEI溶液平均流体动力学直径Dhy随着溶液中PEI浓度的变化关系
图6  PBS缓冲液(pH 7.4)中PEI25k对HSA发射荧光光谱的影响
图7  PBS缓冲液(pH 7.4)中HSA在222 nm的圆二色椭圆度θ222随着PEI浓度的变化关系
图8  PBS缓冲液(pH7.4)中ANS最大发射荧光强度随着PEI浓度的变化关系
图9  含HSA的PBS缓冲液(pH 7.4)中ANS最大发射荧光强度随着PEI浓度的变化关系
图10  含PEI的PBS缓冲液(pH 7.4)中槲皮素发射荧光光谱
图11  含HSA和PEI的PBS (pH 7.4)缓冲液中槲皮素的发射荧光光谱
图12  槲皮素-HSA-PEI的PBS (pH 7.4)缓冲液中槲皮素荧光光谱分解拟合参数B和C随着PEI浓度的变化关系
1 Yin H. ; Kanasty R. L. ; Eltoukhy A. A. ; Vegas A. J. ; Dorkin J. R. ; Anderson D. G. Nat. Rev. Genet. 2014, 15, 541.
doi: 10.1038/nrg3763
2 Giacca M. ; Zacchigna S. J. Control. Release 2012, 161, 377.
doi: 10.1016/j.jconrel.2012.04.008
3 Tiera M. J. ; Shi Q. ; Winnik F. M. ; Fernandes J. C. Curr. Gene Ther. 2011, 11, 288.
doi: 10.2174/156652311796150408
4 Ibraheem D. ; Elaissari A. ; Fessi H. Int. J. Pharm. 2014, 459, 70.
doi: 10.1016/j.ijpharm.2013.11.041
5 Neu M. ; Fischer D. ; Kissel T. J. Gene Med. 2005, 7, 992.
doi: 10.1002/jgm.773
6 Sawant R. R. ; Sriraman S. K. ; Navarro G. ; Biswas S. ; Dalvi R. A. Torchilin V. P. Biomaterials 2012, 33, 3942.
doi: 10.1016/j.biomaterials.2011.11.088
7 Dong H. F. ; Ding L. ; Yan F. ; Ji H. X. ; Ju H. X. Biomaterials 2011, 32, 3875.
doi: 10.1016/j.biomaterials.2011.02.001
8 Yamano S. ; Dai J. ; Hanatani S. ; Haku K. ; Yamanaka T. ; Ishioka M. ; Takayama T. ; Yuvienco C. ; Khapli S. ; Moursi A. M. ; Montclare J. K. Biomaterials 2014, 35, 1705.
doi: 10.1016/j.biomaterials.2013.11.012
9 Moghimi S. M. ; Symonds P. ; Murray J. C. ; Hunter A. C. ; Debska G. ; Szewczyk A. Mol. Ther. 2005, 11, 990.
doi: 10.1016/j.mythe.2005.02.010
10 Larsen A. K. ; Malinska D. ; Koszela-Piotrowska I. ; Parhamifar L. ; Hunter A. C. ; Moghimi S. M. Mitochondrion 2012, 12, 162.
doi: 10.1016/j.mito.2011.08.013
11 Zhong D. ; Jiao Y. ; Zhang Y. ; Zhang W. ; Li N. ; Zuo Q. ; Wang Q. ; Xue W. ; Liu Z. Biomaterials 2013, 34, 294.
doi: 10.1016/j.biomaterials.2012.09.060
12 Pan T. ; Xiao Z.-D. ; Huang P.-M. J. Lumin. 2009, 129, 741.
doi: 10.1016/j.jlumin.2009.02.006
13 Kragh-Hansen U. Pharmacol. Rev. 1981, 33 (1), 17.
14 Ghuman J. ; Zunszain P. A. ; Petitpas I. ; Bhattacharya A. A. ; Otagiri M. ; Curry S. J. Mol. Biol. 2005, 353, 38.
doi: 10.1016/j.jmb.2005.07.075
15 Wu J. ; Zhao C. ; Hu R. ; Lin W. ; Wang Q. ; Zhao J. ; Bilinovich S. M. ; Leeper T. C. ; Li L. ; Cheung H. M. ; Chen S. ; Zheng J. Acta Biomater. 2014, 10, 751.
doi: 10.1016/j.actbio.2013.09.038
16 Almeida N. L. ; Oliveira C. L. P. ; Torriani I. L. ; Loh W. Colloids Surf. B 2004, 38, 67.
doi: 10.1016/j.colsurfb.2004.08.004
17 Bekale L. ; Agudelo D. ; Tajmir-Riahi H. A. Colloids Surf. B 2015, 130, 141.
doi: 10.1016/j.colsurfb.2015.03.045
18 Xiao F. ; Gu M. ; Liang Y. ; Li L. ; Luo Y. ; Spectrochim. Acta Part A 2014, 118, 1106.
doi: 10.1016/j.saa.2013.09.074
19 Bekale L. ; Agudelo D. ; Tajmir-Riahi H. A. Colloids Surf. B 2015, 125, 309.
doi: 10.1016/j.colsurfb.2014.11.037
20 Sekowski S. ; Buczkowski A. ; Palecz B. ; Gabryelak T. ; Spectrochim. Acta Part A 2011, 81, 706.
doi: 10.1016/j.saa.2011.07.009
21 Haouz A. ; El Mohsni S. ; Zentz C. ; Merola F. ; Alpert B. Eur. J. Biochem. 1999, 264, 250.
doi: 10.1046/j.1432-1327.1999.00628.x
22 Beaven G. H. ; Holiday E. R. Adv. Protein Chem. 1952, 7, 319.
doi: 10.1016/S0065-3233(08)60022-4
23 Rosenheck K. ; Doty P. Proc. Natl. Acad. Sci. USA 1961, 47 (11), 1775.
doi: 10.1073/pnas.47.11.1775
24 Donovan J. W. J. Biol. Chem. 1969, 244, 1961.
25 Mazzaferro L. ; Breccia J. D. ; Andersson M. M. ; Hitzmann B. ; Hatti-Kaul R. Int. J. Biol. Macromol. 2010, 47, 15.
doi: 10.1016/j.ijbiomac.2010.04.003
26 Yasuhara K. ; Tsukamoto M. ; Tsuji Y. ; Kikuchi J. Colloids Surf. A 2012, 415, 460.
doi: 10.1016/j.colsurfa.2012.01.024
27 Sabín J. ; Vázquez-Vázquez C. ; Prieto G. ; Bordi F. ; Sarmiento F. Langmuir 2012, 28, 10534.
doi: 10.1021/la3019259
28 Nguyen T. T. ; Shklovskii B. I. Phys. A 2001, 293, 324.
doi: 10.1016/S0378-4371(01)00020-6
29 Nguyen T. T. ; Shklovskii B. I. J. Chem. Phys. 2001, 114, 5905.
doi: 10.1063/1.1355289
30 Pfau A. ; Schrepp W. ; Horn D. Langmuir 1999, 15, 3219.
doi: 10.1021/la9808925
31 Andersson M. M. ; Hatti-Kaul R. J.Phys. Chem. B 2000, 104, 3660.
doi: 10.1021/jp993506g
32 Lakowicz J. R. Principles of Fluorescence Spectroscopy 2nd ed Plenum Press: New York, 1999, pp 185- 486.
33 Burstein E. A. ; Vedenkina N. S. ; Ivkova M. N. Photochem. Photobiol. 1973, 18, 263.
doi: 10.1111/php.1973.18.issue-4
34 Carter D. C. ; Ho J. X. Adv. Protein Chem. 1994, 45, 153.
doi: 10.1016/0162-0134(94)85112-3
35 He X. M. ; Carter C. D. Nature 1992, 358, 209.
doi: 10.1038/358209a0
36 Johnson W. C. Ann. Rev. Biophys. Biophys. Chem. 1988, 17, 145.
doi: 10.1146/annurev.bb.17.060188.001045
37 Brahms S. ; Brahms J. ; Spach G. ; Brack A. Proc. Natl. Acad. Sci. USA 1977, 74 (8), 3208.
doi: 10.1073/pnas.74.8.3208
38 Seedher N. ; Agarwal P. J. Lumin. 2010, 130, 1841.
doi: 10.1016/j.jlumin.2010.04.020
39 Daniel E. ; Weber G. Biochemistry 1966, 5, 1893.
doi: 10.1021/bi00870a016
40 Gasymov O. K. ; Glasgow B. J. Biochim. Biophys. Acta 2007, 1774, 403.
doi: 10.1016/j.bbapap.2007.01.002
41 Kuznetsova I. M. ; Sulatskaya A. I. ; Povarova O. I. ; Turoverov K. K. PLOS ONE 2012, 7 (7), e40845.
doi: 10.1371/journal.pone.0040845
42 Dufour C. ; Dangles O. Biochim. Biophys. Acta 2005, 1721, 164.
doi: 10.1016/j.bbagen.2004.10.013
43 Wolfbeis O. S. ; Begum M. ; Geiger H. Z. Naturforsch. 1984, 39b, 231.
doi: 10.1515/znb-1984-0219
44 Dangles O. ; Dufour C. ; Bret S. J. Chem. Soc., Perkin Trans. 1999, 2, 737.
doi: 10.1039/a810017i
45 Falkovskaia E. ; Sengupta P. K. ; Kasha M. Chem. Phys. Lett. 1998, 297, 109.
doi: 10.1016/S0009-2614(98)01112-9
46 Sengupta P. K. ; Kasha M. Chem. Phys. Lett. 1979, 68 (2-3), 382.
doi: 10.1016/0009-2614(79)87221-8
[1] 韩磊, 彭丽, 蔡凌云, 郑旭明, 张富山. 液态聚乙二醇CH2剪切振动和扭转振动——拉曼光谱和密度泛函理论计算[J]. 物理化学学报, 2017, 33(5): 1043-1050.
[2] 陈海龙, 边红涛, 郑俊荣. 基于超快多维振动光谱技术解析分子体系的三维空间构型[J]. 物理化学学报, 2017, 33(1): 40-62.
[3] 王菡, 王晓敏. 制备条件对PEI功能化石墨烯量子点荧光性能的影响[J]. 物理化学学报, 2016, 32(5): 1267-1272.
[4] 孟现美, 张少龙, 张庆刚. 分子动力学模拟别构抑制剂Efavirenz对HIV-1逆转录酶的作用[J]. 物理化学学报, 2016, 32(2): 436-444.
[5] 沈洪辰, 丁吉勇, 李丽, 刘夫锋. Y220C突变体影响p53C蛋白质构象转换的分子动力学模拟[J]. 物理化学学报, 2016, 32(10): 2620-2627.
[6] 郭清莲, 潘凌立, 杨立云, 何欢, 张业中, 刘义. 吡虫啉与人血清白蛋白相互作用热力学行为[J]. 物理化学学报, 2016, 32(1): 274-282.
[7] 姚蔓莉, 董艳艳, 谢菁, 贾爱平, 谢冠群, 胡庚申, 罗孟飞. 聚乙烯亚胺修饰的氧化硅纳米管基吸附剂的制备及其CO2吸附应用[J]. 物理化学学报, 2014, 30(4): 789-796.
[8] 杨阳, 郭霞. 基于低分子量聚乙烯亚胺和油酸的负电性基因载体[J]. 物理化学学报, 2014, 30(2): 345-350.
[9] 何文英, 姚小军, 华英杰, 黄国雷, 吴秀丽, 李小宝, 韩长日, 宋小平. 考拉维酸对人血清白蛋白结构的影响[J]. 物理化学学报, 2014, 30(11): 2142-2148.
[10] 刘媛, 龙梅, 谢孟峡. 白杨素与不同构型人血清白蛋白的作用机制[J]. 物理化学学报, 2013, 29(12): 2647-2654.
[11] 张兵兵, 赵聪, 王雪松, 何蕾, 杜为红. 4-羟基脯氨酸立体异构对α-芋螺毒素溶液构象的影响[J]. 物理化学学报, 2013, 29(05): 1080-1087.
[12] 白姝, 李浩, 张麟. 静电排斥表面诱导溶菌酶分子站立[J]. 物理化学学报, 2013, 29(04): 849-857.
[13] 董晓燕, 都文婕, 刘夫锋. 多肽抑制剂抑制淀粉质多肽42构象转换的分子动力学模拟和结合自由能计算[J]. 物理化学学报, 2012, 28(11): 2735-2744.
[14] 彭玉苓, 王树军, 傅丽, 张成根, 刘新刚. 烟酸修饰尾式卟啉的合成及其与人血清白蛋白的相互作用[J]. 物理化学学报, 2012, 28(05): 1054-1062.
[15] 刘成勇, 颜建新, 林以玑, 李丹, 方雪明, 章慧. cis-[Ni(NCS)2tren]的镜面对称性破缺: 螯环的特殊手性构象[J]. 物理化学学报, 2012, 28(02): 257-264.