Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (2): 194-200    DOI: 10.3866/PKU.WHXB201707262
论文     
用恒温热重法测定1-己基-3-甲基咪唑苏氨酸离子液体[C6mim][Thr]蒸汽压和蒸发焓
佟静*(),屈晔,井立强,刘璐,刘春辉
Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis
Jing TONG*(),Ye QU,Liqiang JING,Lu LIU,Chunhui LIU
 全文: PDF(1059 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

用中和法合成了氨基酸离子液体(AAIL)1-己基-3-甲基苏氨酸盐[C6mim][Thr],并用核磁共振氢谱(1H NMR)和核磁共振碳谱(13C NMR)进行了表征。以苯甲酸为参考物质,用恒温热重法确定了AAIL[C6mim][Thr]的蒸汽压和在平均温度下(Tav= 438.15 K)的蒸发焓(ΔglHm? (Tav) =128.5 ± 6.0 kJ·mol-1)。利用Verevkin等人提出的方法计算得到AAIL[C6mim][Thr]气态和液态的恒压热容差(ΔglCpm? = -70.8 J·K-1·mol-1),进而计算了不同温度的蒸发焓,其中参考温度(298.15 K)下的蒸发焓ΔglHm? (298.15 K) = 138.4 kJ·mol-1,只比应用我们提出的蒸发焓理论模型估算值大1.6 kJ·mol-1,小于恒温热重法的实验误差3.0 kJ·mol-1,说明这个蒸发焓的理论模型有一定的合理性。借助Clausius-Clapeyron方程估算了AAIL[C6mim][Thr]的假想的正常沸点Tb= 522.07 K,以及沸点的蒸发熵ΔglSm? (Tb) = 228.5 J·K-1·mol-1,进一步得到了不同温度的蒸发熵和蒸发自由能ΔglGm? (T),其结果表明蒸发自由能随着温度的上升而减小,达到沸点温度Tb时变为零,而蒸发熵则随着温度上升而增大,是AAIL[C6mim][Thr]蒸发过程的驱动力。

关键词: 离子液体恒温热重分析法蒸发焓蒸汽压苏氨酸    
Abstract:

The amino acid ionic liquid (AAIL) 1-hexyl-3-methylimidazolium threonine salt, [C6mim][Thr], was prepared by the neutralization method and its structure was confirmed by 1H and 13C NMR spectroscopy. Using benzoic acid as the reference material, the vapor pressure and evaporation enthalpy ΔglHm? (Tav) of [C6mim][Thr] were determined by isothermogravimetric analysis at the average temperature (Tav = 438.15 K) and DglHm? (Tav)was found to be (128.5 ± 6.0) kJ·mol-1. Using Verevkin's method, the difference between the heat capacities of the vapor and liquid phases, ΔglCpm?, was calculated to be -70.8 J·K-1·mol-1. Subsequently, the enthalpy of vaporization for AAIL [C6mim][Thr] at different temperatures was determined based on the reference enthalpy of vaporization at 298.15 K, ΔglHm? (298.15 K) = 138.4 kJ·mol-1. This value is 1.6 kJ·mol-1 higher than that predicted by our theoretical model and less than the experimental error (±3.0 kJ·mol-1) of the isothermogravimetric method. These results show that our theoretical model for determining the evaporation enthalpy of ILs is reasonable. In terms of the Clausius-Clapeyron equation, the hypothetical normal boiling point, Tb, was estimated to be 522.07 K. Thus, the evaporation entropy, ΔglSm? (T), and the evaporation Gibbs free energy, ΔglGm? (T), of [C6mim][Thr] could be determined for different temperatures. These results showed that DglGm? (T) decreases as the temperature increases, the evaporation entropy increases with increaseing temperature. Furthermore, the latter is the driving force in the evaporation process of the AAIL [C6mim][Thr].

Key words: Ionic liquid    Isothermogravimetrical analysis    Enthalpy of vaporization    Vapor pressure    Threonine
收稿日期: 2017-06-16 出版日期: 2017-07-26
中图分类号:  O642  
基金资助: 国家自然科学基金(21273003)
通讯作者: 佟静     E-mail: tongjinglnu@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
佟静
屈晔
井立强
刘璐
刘春辉

引用本文:

佟静,屈晔,井立强,刘璐,刘春辉. 用恒温热重法测定1-己基-3-甲基咪唑苏氨酸离子液体[C6mim][Thr]蒸汽压和蒸发焓[J]. 物理化学学报, 2018, 34(2): 194-200, 10.3866/PKU.WHXB201707262

Jing TONG,Ye QU,Liqiang JING,Lu LIU,Chunhui LIU. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis. Acta Phys. -Chim. Sin., 2018, 34(2): 194-200, 10.3866/PKU.WHXB201707262.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201707262        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I2/194

Material Source Method of purification Purity (x)
N-methylimidazole ACROS Reduced pressure distillation 0.998
DL-threonine National Pharmaceutical Group Chemical Recrystallization 0.999
1-Bromohexane National Pharmaceutical Group Chemical Distillation 0.996
Ethyl acetate National Pharmaceutical Group Chemical Distillation 0.99
Acetonitrile National Pharmaceutical Group Chemical Distillation 0.99
[C6mim][Thr] Synthesized Vacuum drying 0.99
Deionized water Self-made Quartz second boiling high pure water distiller
Benzoic acid National Institute of Metrology, China 0.999
表1  试剂的来源和纯度
图1  AAIL [C6mim][Thr]和苯甲酸的(m0 -m)分别对(t -t0)作图
Benzoic acid
T/K 1010(-dm/dt)/(kg·s-1) r2 (T/M)1/2/(K1/2·mol1/2·kg-1/2) p/Pa a 1010υ 10-10k
353.15 0.577 0.9996 53.78 51.69 31.02 1.667
358.15 1.060 0.9998 54.16 70.02 57.41 1.220
363.15 1.693 0.9993 54.53 94.04 92.31 1.019
368.15 2.576 0.9990 54.91 125.3 141.4 0.886
373.15 3.841 0.9988 55.28 165.7 212.3 0.780
378.15 5.625 0.9988 55.65 217.5 313.0 0.695
383.15 8.217 0.9990 56.01 283.4 460.2 0.616
[C6mim][Thr]
T/K 1010(-dm/dt)/(kg·s-1) r2 (T/M)1/2/(K1/2·mol1/2·kg-1/2) p/Pa b 1010υ ln[T1/2·(-dm/dt)/(K?kg·s-1)]
413.15 1.147 0.9999 39.02 44.02 4.477 -19.88
423.15 2.545 0.9999 39.49 98.81 10.05 -19.07
433.15 5.510 0.9999 39.95 216.4 22.01 -18.28
443.15 14.99 0.9998 40.41 595.6 60.58 -17.27
453.15 29.63 0.9999 40.86 1190 121.1 -16.58
463.15 56.52 0.9999 41.31 2295 233.5 -15.92
表2  AAIL [C6mim][Thr]和苯甲酸的蒸汽压(p), -dm/dt, ln[T1/2·(-dm/dt)]和ν的值
图2  AAIL [C6mim][Thr]的ln ν vs 1/T作图
T/K ΔglHm?(T)/(kJ?mol-1) ΔglSm?(T)/(J?K-1?mol-1) TΔglSm?(T)/(kJ?mol-1) ΔglGm?(T)/(kJ?mol-1) p(T)/Pa
298.15 138.4 274.4 81.82 56.58 4.045 × 10-6
320.15 136.8 269.4 86.25 50.60 2.352 × 10-4
340.15 135.4 265.1 90.18 45.26 5.756 × 10-3
360.15 134.0 261.1 94.02 40.00 9.522 × 10-2
380.15 132.6 257.2 97.79 34.81 1.133
400.15 131.2 253.6 101.5 29.71 10.19
420.15 129.8 250.2 105.1 24.67 72.05
440.15 128.4 246.9 108.7 19.70 4.141 × 102
460.15 126.9 243.7 112.2 14.79 1.987 × 103
480.15 125.5 240.7 115.6 9.948 8.144 × 103
500.15 124.1 237.8 118.9 5.163 2.905 × 104
522.07 122.6 234.8 122.6 0 1.013 × 105
表3  不同温度下离子液体[C6mim][Thr]蒸发过程的热力学参数ΔglHm?(T),ΔglSm?(T),TΔglSm?(T),Δgl Gm?(T)的值和蒸汽压
图3  不同温度下的离子液体[C6mim][Thr]的ΔglHm?(T)、TΔglSm?(T)、ΔglGm?(T) vs T和p(T) vs T作图
12 Zaitsau D. H. ; Kabo G. J. ; Strechan A. A. ; Paulechka Y. U. ; Tschersich A. ; Verevkin S. P. ; Heintz A. J. Chem. Phys. A 2006, 110, 7303.
doi: 10.1021/jp060896f
13 Luo H. ; Baker G. A. ; Dai S. J. Chem. Phys. B 2008, 112, 10077.
doi: 10.1021/jp805340f
14 Heym F. ; Etzold B. J. M. ; Kern C. ; Jess A. Green Chem. 2011, 13, 1453.
doi: 10.1039/C0GC00876A
15 Verevkin S. P. ; Ralys R. V. ; Zaitsau D. H. ; Emel'yanenko V. N. ; Schick C. Thermochim. Acta 2012, 538, 55.
doi: 10.1016/j.tca.2012.03.018
16 Tong J. ; Yang H. X. ; Liu R. J. ; Li C. ; Xia L. X. ; Yang J. Z J. Phys. Chem. B 2014, 118, 12972.
doi: 10.1021/jp509240w
17 Hong M. ; Liu R. J. ; Yang H. X. ; Guan W. ; Tong J. ; Yang J. Z. J. Chem. Thermodyn. 2014, 70, 214.
doi: 10.1016/j.jct.2013.11.004
18 Zaitsau D. H. ; Kabo G. J. ; Strechan A. A. ; Paulechka Y. U. ; Tschersich A. ; Verevkin S. P. ; Heintz A. J. Chem. Phys. A 2006, 110, 7303.
doi: 10.1021/jp060896f
1 Zhang S. J. ; Liu X. M. Ionic Liquid: From Basic Research to Industrial Applications Science Press: Beijing, 2006.
张锁江; 吕兴梅. 离子液体:从基础研究到工业应用, 北京: 科学出版社, 2006.
19 Tong J. ; Chen T. F. ; Zhang D. ; Wang L. F. ; Tong J. ; Yang J. Z. Acta Phys. -Chim. Sin. 2016, 32, 1161.
doi: 10.3866/PKU.WHXB201602232
佟静; 陈滕飞; 张朵; 王林富; 佟健; 杨家振. 物理化学学报, 2016, 32, 1161.
doi: 10.3866/PKU.WHXB201602232
2 Armand M. ; Endres F. ; MacFarlane D. R. ; Ohno H. ; Scrosati B. Nat. Mater. 2009, 8, 621.
doi: 10.1038/NMAT2448
3 Bu X. X. ; Fan B. H. ; Wei J. ; Xing N. N. ; Ma X. X. ; Guan W. Acta Phys. -Chim. Sin. 2016, 32, 267.
doi: 10.3866/PKU.WHXB201510303
20 Li C. ; Yang H. X. ; Liu R. J. ; Yang Q. ; Tong J. ; Yang J. Z. Acta Phys. -Chim. Sin. 2015, 31, 11.
doi: 10.3866/PKU.WHXB201411063
李驰; 杨宏旭; 刘入境; 杨奇; 佟静; 杨家振. 物理化学学报, 2015, 31, 11.
doi: 10.3866/PKU.WHXB201411063
21 Stewart, L. N. In Proceedings of the Third Toronto Symposium on Thermal Analysis; McAdie, H. G. Ed.; Chemical Institute of Canada: Toronto, 1969; p. 205.
22 Hinks D. ; Rafiq M. I. ; Price D. M. ; Montero G. A. ; Smith B. A. Color Technol. 2003, 119, 84.
doi: 10.1111/j.1478-4408.2003.tb00155.x
23 Price D. M. Thermochim. Acta 2001, 253, 367.
doi: 10.1016/S0040-6031(00)00676-6
24 Verevkin S. P. ; Zaitsau D. H. ; Emel'yanenko V. N. ; Yermalayeu A. V. J. Phys. Chem. B 2013, 117, 6473.
doi: 10.1021/jp311429r
25 Zaitsau D. H. ; Yernalayeu A. V. ; Emel'yanenko V. N. ; Verevkin S. P. ; Welz-Biermann U. ; Schubert T. Sci. China Chem. 2012, 55, 1526.
doi: 10.1002/cphc.201100879
26 Paulechka Y. U. ; Zaitsau D. H. ; Kabo G. J. J. Mol. Liq. 2004, 115, 105.
doi: 10.1016/j.molliq.2004.03.002
27 Zhang D. ; Qu Y. ; Gong Y. Y. ; Tong J. ; Fang D. W. ; Tong J. J. Chem. Thermodyn. Submitted.
28 Tong J. ; Liu L. ; Li H. ; Guan W. ; Chen X. J. Chem. Thermodyn. 2017, 112, 293.
doi: 10.1016/j.jct.2017.05.015
29 Archer D. G. ; Widegren J. A. ; Kirklin D. R. ; Magee J. W. J. Chem. Eng. Data 2005, 50, 1484.
doi: 10.1021/je050136i
3 卜晓雪; 樊本汉; 魏杰; 邢楠楠; 马晓雪; 关伟. 物理化学学报, 2016, 32, 267.
doi: 10.3866/PKU.WHXB201510303
4 Tao G. H. ; He L. ; Liu W. S. ; Xu L. ; Xiong W. ; Wang T. ; Kou Y. Green Chem. 2006, 8, 639.
doi: 10.1039/B600813E
5 Fukumoto K. ; Yoshizawa M. ; Ohno H. J. Am. Chem. Soc. 2005, 127, 2398.
doi: 10.1021/ja043451i
6 Zhang S. ; Wang J. ; Lu X. ; Zhou Q. Structures and Interactions of Ionic Liquids Springer: Heidelberg, 2014.
7 Fang D. W. ; Tong J. ; Guan W. ; Wang H. ; Yang J. Z. J. Phys. Chem. B 2010, 114, 13808.
doi: 10.1021/jp107452q
8 Tong J. ; Song B. ; Wang C. X. ; Li L. ; Guan W. ; Fang D. W. ; Yang J. Z. Ind. Eng. Chem. Res. 2011, 50, 2418.
doi: 10.1021/ie101903t
9 Earle M. J. ; Esperanc J. M. S. S. ; Gilea M. A. ; Lopes J. N. C. ; Rebelo L. P. N. ; Magee J. W. ; Seddon K. R. ; Widegren J. A. Nature 2006, 439, 831.
doi: 10.1038/nature04451
10 Deyko A. ; Lovelock K. R. ; Corfield J. A. ; Taylor A. W. ; Gooden P. N. ; Villar-Garcia I. J. ; Licence P. ; Jones R. G. ; Krasovskiy V. G. ; Chernikova E. A. ; et al Phys. Chem. Chem. Phys. 2009, 11, 8544.
doi: 10.1039/b908209c
11 Esperanc J. M. S. S. ; Lopes J. N. C. ; Tariq M. ; Santos L. M. N. B. F. ; Magee J. W. ; Rebelo L. P. N. J. Chem. Eng. Data 2010, 55, 3.
doi: 10.1021/je900458w
[1] 陈文琼,关永吉,张晓萍,邓友全. 分子动力学模拟研究外电场对咪唑类离子液体振动谱的影响[J]. 物理化学学报, 2018, 34(8): 912-919.
[2] 胡之楠,左剑涛,夏美晨,房大维,臧树良. Pitzer方程应用于离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)溶解焓研究[J]. 物理化学学报, 2018, 34(8): 933-937.
[3] 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938-944.
[4] 陈必华,ELAGEED Elnazeer H. M.,张永亚,高国华. 离子液体BmmimOAc催化2-芳氨基乙醇与二硫化碳一步缩合合成3-芳基-2-噻唑硫酮[J]. 物理化学学报, 2018, 34(8): 952-958.
[5] 相欣然,万晓梅,索红波,胡燚. 功能化离子液体修饰多壁碳纳米管固定化Candida antarctic lipase B[J]. 物理化学学报, 2018, 34(1): 99-107.
[6] 蒙延双,王琛,王磊,王功瑞,夏军,朱福良,ZHANG Yue. 微波辅助裂解离子液体制备硫氮共掺杂多孔碳材料[J]. 物理化学学报, 2017, 33(9): 1915-1922.
[7] 郑其格,刘惠,夏泉,刘青山,牟林. 两种疏水型膦类离子液体的密度、动力粘度及电导率[J]. 物理化学学报, 2017, 33(4): 736-744.
[8] 白金,陈鑫,奚兆毅,王翔,李强,胡绍争. 溶剂热后处理对石墨相氮化碳光化学固氮产氨性能的影响[J]. 物理化学学报, 2017, 33(3): 611-619.
[9] 佟静,刘璐,张朵,郑煦,陈霞,杨家振. [C2mim][Ala]丙氨酸离子液体水溶液粘滞流动的活化参数[J]. 物理化学学报, 2017, 33(3): 513-519.
[10] 马仁君,郭前进,李博轩,夏安东. 离子液体[Bmim][BF4]中卟啉的三线态动力学[J]. 物理化学学报, 2017, 33(11): 2191-2198.
[11] 袁威津,董珍,赵龙,于天麟,翟茂林. γ辐射下CMPO/[C2mim][NTf2]的辐解及其对Eu3+萃取的影响[J]. 物理化学学报, 2016, 32(8): 2101-2107.
[12] 郑晓頔,朱艳丽,董睿,焦清介. 烷基咪唑离子液体CnmimCl(n=4, 6, 8)对CL-20重结晶的影响[J]. 物理化学学报, 2016, 32(8): 1950-1959.
[13] 吴阳,岳丽丽,刘巧珍,王霞. 咪唑醋酸离子液体热力学性质的理论研究[J]. 物理化学学报, 2016, 32(8): 1960-1966.
[14] 张小宁,胡红美. 室温下Kelvin探针力显微镜分析离子液体的界面[J]. 物理化学学报, 2016, 32(7): 1722-1726.
[15] 麦俊林,孙德林,全学波,李理波,周健. 耗散粒子动力学模拟Nafion-[Bmim][TfO]离子液体复合膜的介观结构[J]. 物理化学学报, 2016, 32(7): 1649-1657.