Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (4): 437-444    DOI: 10.3866/PKU.WHXB201709043
论文     
点缺陷引起中子辐照MgO(110)单晶的铁磁性
曹梦雄1,王兴宇1,马亚茹1,马春林1,周卫平1,*(),王晓雄1,王海欧2,谭伟石1,3,*()
1 南京理工大学理学院应用物理系,软化学与功能材料教育部重点实验室,南京210094
2 杭州电子科技大学材料物理研究所,杭州310018
3 湖南城市学院信息与电子工程学院,湖南益阳413002
Point Defects Induced Ferromagnetism in Neutron Irradiated MgO(110) Single Crystals
Mengxiong CAO1,Xingyu WANG1,Yaru MA1,Chunlin MA1,Weiping ZHOU1,*(),Xiaoxiong WANG1,Haiou WANG2,Weishi TAN1,3,*()
1 Key Laboratory of Soft Chemistry and Functional Materials of Ministry of Education, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
2 Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
3 College of Communication and Electronic Engineering, Hunan City University, Yiyang 413002, Hunan Province, P. R. China
 全文: PDF(1490 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

对MgO(110)单晶进行中子辐照,辐照剂量从1.0 × 1016到1.0 × 1020 cm-2。基于黄昆漫散射理论,我们计算了MgO晶体中的立方缺陷和偶极力缺陷引起的X射线漫散射强度分布图。通过X射线漫散射及紫外-可见光(UV-Vis)吸收光谱实验表征了晶体的点缺陷组态,并利用超导量子干涉仪(SQUID)测量了样品的磁性。ω–2θ和摇摆曲线说明MgO单晶经中子辐照后产生了晶格畸变,晶体中存在一定浓度的点缺陷。倒易空间图(RSM)显示中子辐照的MgO单晶存在漫散射现象。与计算得到的漫散射分布图对比分析可知,中子辐照的MgO(110)单晶中产生了弗仑克尔缺陷。UV-Vis吸收光谱表明所有辐照晶体中存在阴离子单空位缺陷。辐照剂量较高(1.0 × 1019和1.0 × 1020 cm-2)的样品中存在O空位的聚集。磁性测量显示中子辐照后的MgO(110)单晶在室温下依然是抗磁性,但在低温下具有铁磁性,最大饱和磁化强度达到0.058 emu·g-1。通过中子辐照的方法,可以使MgO(110)单晶产生点缺陷引起的低温铁磁性。利用F色心交换机制可以解释中子辐照MgO晶体中的O空位缺陷与铁磁性之间的关系。

关键词: MgO单晶中子辐照点缺陷d0铁磁性RSM色心    
Abstract:

The MgO(110) single crystals were neutron-irradiated with different doses ranging from 1.0×1016 to 1.0×1020 cm-2. The isointensity profiles of the X-ray diffuse scattering caused by the cubic and double-force point defects in MgO were calculated on the basis of the Huang scattering theory. The X-ray diffuse scattering and the UV-Vis absorption spectra were recorded to investigate the point defect configurations in the MgO(110) crystals. Furthermore, the magnetic properties were characterized by a superconducting quantum interference device magnetometer. The ω–2θ curves and rocking curves implied that neutron irradiation enhanced the lattice distortion. The point defects were produced in irradiated MgO crystals. The measured reciprocal space mappings (RSMs) revealed that the notable diffuse scattering was presented in irradiated MgO. Compared with the calculated diffuse scattering intensity profile, it was evident that Frenkel defects were introduced in the irradiated samples. The UV-Vis spectra indicated that anion O vacancy defects had been introduced in irradiated MgO. The single vacancies could be aggregated in irradiated samples with higher doses (1.0×1019 and 1.0×1020 cm-2). Although the irradiated MgO(110) single crystals were diamagnetic at room temperature, they became ferromagnetic at low temperature. The maximum saturation magnetization was found to be 0.058 emu·g-1. By means of neutron irradiation, defect-mediated ferromagnetism could be achieved at low temperature. The correlation between ferromagnetism and O vacancies in neutron-irradiated MgO could be described using F-center exchange mechanism.

Key words: MgO single crystal    Neutron irradiation    Point defect    d0 ferromagnetism    RSM    Color center
收稿日期: 2017-08-18 出版日期: 2017-09-04
中图分类号:  O649  
基金资助: 国家自然科学基金(U1332106);国家自然科学基金(11604147);国家自然科学基金(11604067);江苏省普通高校研究生科研创新项目(CXLX13_179)
通讯作者: 周卫平,谭伟石     E-mail: wpzhou@njust.edu.cn;tanweishi@njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹梦雄
王兴宇
马亚茹
马春林
周卫平
王晓雄
王海欧
谭伟石

引用本文:

曹梦雄,王兴宇,马亚茹,马春林,周卫平,王晓雄,王海欧,谭伟石. 点缺陷引起中子辐照MgO(110)单晶的铁磁性[J]. 物理化学学报, 2018, 34(4): 437-444.

Mengxiong CAO,Xingyu WANG,Yaru MA,Chunlin MA,Weiping ZHOU,Xiaoxiong WANG,Haiou WANG,Weishi TAN. Point Defects Induced Ferromagnetism in Neutron Irradiated MgO(110) Single Crystals. Acta Physico-Chimica Sinca, 2018, 34(4): 437-444.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201709043        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I4/437

Fig 1  Calculated isointensity profiles of X-ray diffuse scattering near (a) 200 and (b) 220 reciprocal-lattice points for the cubic point defect in MgO.
Fig 2  Calculated isointensity profiles of X-ray diffuse scattering near reciprocal-lattice points (a) 200, (b) 020, (c) 002, and (d) 220 for the double-force point defect in MgO.
Fig 3  X-ray diffraction patterns of neutron irradiated MgO(110) single crystals with different doses.
Fig 4  ω–2θ curves (a) and rocking curves (b) in the vicinity of (220) reflection for MgO(110) single crystals. To adjust position of ω and 2θ axes accurately in our experiment, we fix one of these two axes and scan the other one repeatedly until the maximum of diffraction intensity appears. We do not change the zero point of ω and 2θ axes of goniometer during measurement and therefore, the ratio of 2θ/ω is not strictly twice in the measured results. The reason for this case is due to the angle of inclination between the surface and diffracting plane of MgO single crystals.
Fig 5  RSMs around the (220) reflection for MgO(110) irradiated with different doses of (a) 1.0 × 1016 cm-2, (b) 1.0 × 1017 cm-2, (c) 1.0 × 1019 cm-2, and (d) 1.0 × 1020 cm-2.
Fig 6  UV-Vis absorption spectra of neutron irradiated MgO(110) single crystals with different doses.
Fig 7  M–H curves at different temperatures for irradiated MgO(110) of (a) 1.0 × 1016 cm-2, (b) 1.0 × 1017 cm-2, (c) 1.0 × 1019 cm-2, and (d) 1.0 × 1020 cm-2.
Fig 8  Temperature dependence of ZFC and FC magnetization of irradiated MgO of 1.0 × 1020 cm-2
1 Venkatesan M. ; Fitzgerald C. B. ; Coey J. M. D. Nature 2004, 430, 630.
doi: 10.1038/430630a
2 Wang S. ; Pan L. ; Song J. ; Mi W. ; Zou J. ; Wang L. ; Zhang X. J. Am. Chem. Soc. 2015, 137, 2975.
doi: 10.1021/ja512047k
3 Patel S. K. S. ; Dewangan K. ; Srivastav S. K. ; Gajbhiye N. S. Curr. Appl. Phys. 2014, 14, 905.
doi: 10.1016/j.cap.2014.04.007
4 Phokha S. ; Swatsitang E. ; Maensiri S. Electron. Mater. Lett. 2015, 11, 1012.
doi: 10.1007/s13391-015-4164-4
5 Yang G. ; Gao D. ; Zhang J. ; Zhang J. ; Shi Z. ; Xue D. J. Phys. Chem. C 2011, 115, 16814.
doi: 10.1021/jp2039338
6 Bhaumik S. ; Sinha A. K. ; Ray S. K. ; Das A. K. IEEE Trans. Magn. 2014, 50, 2400206.
doi: 10.1109/TMAG.2013.2292575
7 Das A. K. ; Srinivasan A. J. Magn. Magn. Mater. 2016, 404, 190.
doi: 10.1016/j.jmmm.2015.12.032
8 Coey J. M. D. Solid State Sci. 2005, 7, 660.
doi: 10.1016/j.solidstatesciences.2004.11.012
9 Seike M. ; Sato K. ; Katayama-Yoshida H. Jpn. J. Appl. Phys. 2011, 50, 090204.
doi: 10.1143/jjap.50.090204
10 Hu J. ; Zhang Z. ; Zhao M. ; Qin H. ; Jiang M. Appl. Phys. Lett. 2008, 93, 192503.
doi: 10.1063/1.3021085
11 Khamkongkaeo A. ; Mothaneeyachart N. ; Sriwattana P. ; Boonchuduang T. ; Phetrattanarangsi T. ; Thongchai C. ; Sakkomolsri B. ; Pimsawat A. ; Daengsakul S. ; Phumying S. ; Chanlek N. ; Kidkhunthod P. ; Lohwongwatana B. J. Alloy. Compd. 2017, 705, 668.
doi: 10.1016/j.jallcom.2017.02.170
12 Li J. ; Jiang Y. ; Bai G. ; Ma T. ; Yang D. ; Du Y. ; Yan M. Appl. Phys. A 2014, 115, 997.
doi: 10.1007/s00339-013-7922-x
13 Singh J. P. ; Chen C. L. ; Dong C. L. ; Prakash J. ; Kabiraj D. ; Kanjilal D. ; Pong W. F. ; Asokan K. Superlattices Microstruct. 2015, 77, 313.
doi: 10.1016/j.spmi.2014.10.035
14 Kuang F. ; Kang S. ; Kuang X. ; Chen Q. RSC Adv. 2014, 4, 51366.
doi: 10.1039/C4RA06340F
15 Uchino T. ; Yoko T. Phys. Rev. B 2013, 87, 144414.
doi: 10.1103/PhysRevB.87.144414
16 Merabet B. ; Kacimi S. ; Mir A. ; Azzouz M. ; Zaoui A. Mod. Phys. Lett. B 2015, 29, 1550147.
doi: 10.1142/S021798491550147X
17 Glinchuk M. D. ; Eliseev E. A. ; Khist V. V. ; Morozovska A. N. Thin Solid Films 2013, 534, 685.
doi: 10.1016/j.tsf.2013.02.135
18 Zhang Y. ; Feng M. ; Shao B. ; Lu Y. ; Liu H. ; Zuo X. J. Appl. Phys. 2014, 115, 17A926.
doi: 10.1063/1.4867228
19 Kumar A. ; Kumar J. ; Priya S. Appl. Phys. Lett. 2012, 100, 192404.
doi: 10.1063/1.4712058
20 Maoz B. M. ; Tirosh E. ; Sadan M. B. ; Markovich G. Phys. Rev. B 2011, 83, 161201.
doi: 10.1103/PhysRevB.83.161201
21 Mishra D. ; Mandal B. P. ; Mukherjee R. ; Naik R. ; Lawes G. ; Nadgorny B. Appl. Phys. Lett. 2013, 103, 182204.
doi: 10.1063/1.4804425
22 Phokha S. ; Klinkaewnarong J. ; Hunpratub S. ; Boonserm K. ; Swatsitang E. ; Maensiri S. J. Mater. Sci.: Mater. Electron. 2016, 27, 33.
doi: 10.1007/s10854-015-3713-9
23 Flocken J. W. ; Hardy J. R. Phys. Rev. B 1970, 1, 2472.
doi: 10.1103/PhysRevB.1.2472
24 Bachiller-Pere D. ; Debelle A. ; ThoméL. ; Crocombette J. J. Mater. Sci. 2016, 51, 1456.
doi: 10.1007/s10853-015-9465-3
25 Pillukat A. ; Karsten K. ; Ehrhart P. Phys. Rev. B 1996, 53, 7823.
doi: 10.1103/PhysRevB.53.7823
26 Karsten K. ; Ehrhart P. Phys. Rev. B 1995, 51, 508.
doi: 10.1103/PhysRevB.51.10508
27 Ruan Y. ; Ma P. ; Liu J. ; Li W. ; Liu C. J. Rare Earths 2006, 24, 56.
28 Monge M. A. ; Popov A. I. ; Ballesteros C. ; González R. ; Chen Y. ; Kotomin E. A. Phys. Rev. B 2000, 62, 9299.
doi: 10.1103/PhysRevB.62.9299
29 Gao F. ; Hu J. ; Yang C. ; Zheng Y. ; Qin H. ; Sun L. ; Kong X. ; Jiang M. Solid State Commun. 2009, 149, 855.
doi: 10.1016/j.ssc.2009.03.010
30 Osorio-Guillén J. ; Lany S. ; Barabash S. V. ; Zunger A. Phys. Rev. Lett. 2006, 96, 107203.
doi: 10.1103/PhysRevLett.96.107203
31 Prucnal A. ; Shalimov A. ; Ozerov M. ; Potzger K. ; Skorupa W. J. Cryst. Growth 2012, 339, 70.
doi: 10.1016/j.jcrysgro.2011.11.067
32 Yang G. ; Gao D. ; Shi Z. ; Zhang Z. ; Zhang J. ; Zhang J. ; Xue D. J. Phys. Chem. C 2010, 114, 21989.
doi: 10.1021/jp106818p
33 Gao D. ; Li J. ; Li Z. ; Zhang Z. ; Zhang J. ; Shi H. ; Xue D. J. Phys. Chem. C 2010, 114, 11703.
doi: 10.1021/jp911957j
34 Coey J. M. D. ; Venkatesan M. ; Fitzgerald C. B. Nature Mater. 2005, 4, 173.
doi: 10.1038/nmat1310
35 Singhal R. K. ; Kumari P. ; Samariya A. ; Kumar S. ; Sharma S. C. ; Xing Y. T. ; Saitovitch E. Appl. Phys. Lett. 2010, 97, 172503.
doi: 10.1063/1.3507290
36 Singhal R. K. ; Kumar S. ; Kumari P. ; Xing Y. T. ; Saitovitch E. Appl. Phys. Lett. 2011, 98, 092510.
doi: 10.1063/1.3562328
37 Shah L. R. ; Ali B. ; Zhu H. ; Wang W. G. ; Song Y. Q. ; Zhang H. W. ; Shah S. I. ; Xiao J. Q. J. Phys.: Condens. Matter 2009, 21, 486004.
doi: 10.1088/0953-8984/21/48/486004
[1] 刘凤明, 刘廷禹, 刘检, 李海心. 结合第一性原理和热力学计算对HfO2晶体本征点缺陷的预测[J]. 物理化学学报, 2015, 31(3): 441-447.
[2] 郑晖, 申亮, 白彬. 金属间化合物NiAl晶格模型的蒙特卡罗模拟[J]. 物理化学学报, 2009, 25(12): 2531-2536.