Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (4): 424-436    DOI: 10.3866/PKU.WHXB201709082
论文     
含不同杂原子共轭单元的有机光敏染料的超快发光动力学
刘娇1,3,霍继存1,3,张敏2,*(),董献堆1,*()
1 中国科学院长春应用化学研究所,长春130022
2 天津理工大学新能源材料与低碳技术研究院,天津300384
3 中国科学院大学,北京100049
Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms
Jiao LIU1,3,Jicun HUO1,3,Min ZHANG2,*(),Xiandui DONG1,*()
1 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
2 Institute of New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(3965 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

系统研究了含有不同杂原子的共轭单元(联呋喃、联噻吩及联硒酚)的三种有机染料C210、C214和C216的超快发光动力学,双己氧基取代的三苯胺作为电子给体,氰基丙烯酸作为电子受体。详细考察了三种染料分别在不同媒介中的激发态动力学:四氢呋喃及甲苯溶液、聚甲基丙烯酸甲酯及聚苯乙烯聚合物薄膜、氧化铝及二氧化钛薄膜表面。发现在以上介质中都普遍存在动态斯托克斯位移现象,表明发生了非平衡激发态的分子内多步弛豫过程。由于扭转弛豫和电子注入过程之间的竞争作用,非平衡激发态的电子注入产率比平衡激发态的低得多。此外,由于激发态能量弛豫导致的能量损失,电子注入时间常数变化超过了一个数量级,这在未来的染料设计及器件发展中应进行控制。三种染料在平衡激发态处的电子注入效率相近,由于C210和C216加快的电子注入速率补足了它们较C214小的平衡激发态寿命。

关键词: 太阳电池激发态动力学有机染料超快光谱飞秒荧光上转换    
Abstract:

The ultrafast photoluminescence dynamics of three organic dyes—C210, C214, and C216—with different conjugated linkers containing various heteroatoms, such as bifuran, bithiophene and biselenophene, in combination with dihexyloxy-substituted triphenylamine (TPA) as the electron donor and cyanoacrylic acid (CA) as the electron acceptor have been studied systematically. The excited-state dynamics of the three dyes were investigated in detail in different media: tetrahydrofuran (THF) and toluene (PhMe) solutions, polymethyl methacrylate (PMMA) and polystyrene (PS) polymer films, and the surfaces of alumina and titania films in contact with an ionic liquid composite electrolyte. These dyes were found to feature dynamic Stokes shifts in all the aforementioned media, indicating stepwise intramolecular relaxations of the non-equilibrium excited state. The electron injection yield was distinctly lower for the non-equilibrium excited state than the equilibrium excited states, which can be ascribed to the competition between torsional relaxation and electron injection. A broad time scale over one magnitude of order was presented for electron injection due to the great energy losses originating from the multiple torsional relaxations, which should be controlled for future dye design and device development. Moreover, despite the shorter lifetimes of the equilibrium excited states for C210 and C216 than C214, the electron injection yields of equilibrium excited states for all the dyes are comparable due to the accelerated electron injection rate.

Key words: Solar cells    Excited-state dynamics    Organic dyes    Ultrafast spectroscopy    Femtosecond fluorescence up-conversion
收稿日期: 2017-08-15 出版日期: 2017-09-08
中图分类号:  O644  
基金资助: 国家自然科学基金(51473158);国家自然科学基金(91233206)
通讯作者: 张敏,董献堆     E-mail: zm2016@email.tjut.edu.cn;dxd@ciac.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘娇
霍继存
张敏
董献堆

引用本文:

刘娇,霍继存,张敏,董献堆. 含不同杂原子共轭单元的有机光敏染料的超快发光动力学[J]. 物理化学学报, 2018, 34(4): 424-436.

Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms. Acta Physico-Chimica Sinca, 2018, 34(4): 424-436.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201709082        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I4/424

Fig 1  Chemical structures of D-A dyes C210, C214, and C216, characteristic of bifuran (red), bithiophene (blue), and biselenophene (green) as the conjugated linkers, respectively, combined with the dihexyloxy-substituted triphenylamine donor and the cyanoacrylic acid acceptor. Color online.
Fig 2  Photophysical properties of chromophores dissolved in THF (150 μmol·L-1). (a) Steady-state UV-Vis absorption (solid lines) and PL (short dash lines) spectroscopies of C210 (red), C214 (blue), and C216 (green). (b) Normalized ultrafast kinetic traces (scatter dots) at three selected PL wavelengths of C214 in THF. The solid fitting lines are obtained via equation 1. (c) Scatter plots of average time constants (τ) as a function of PL wavelengths for these molecules in THF. The solid lines are displayed to guide the eyes.
Fig 3  (a–c) Contour plots of time-resolved PL (TRPL) spectroscopies, (d–f) evolution associated PL (EAPL) spectroscopies, and (g–i) normalized EAPL of (a, d, and g) C210, (b, e, and h) C214, and (c, f, and i) C216 in THF. The time constants of spectroscopic evolution derived from global fitting are included, and the solid lines are obtained via log-normal function.
Fig 4  Photophysical properties of chromophores dissolved in PhMe (150 μmol·L-1). (a) Steady-state UV-Vis absorption (solid lines) and PL (short dash lines) spectroscopies of C210 (red), C214 (blue), and C216 (green). (b) Normalized ultrafast kinetic traces (scatter dots) at three selected PL wavelengths of C214 in PhMe. The solid fitting lines are obtained via equation 1. (c) Scatter plots of average time constants (τ) as a function of PL wavelengths for these molecules in PhMe. The solid lines are displayed to guide the eyes.
Fig 5  (a–c) Contour plots of time-resolved PL (TRPL) spectroscopies, (d–f) evolution associated PL (EAPL) spectroscopies, and (g–i) normalized EAPL of (a, d, and g) C210, (b, e, and h) C214, and (c, f, and i) C216 in PhMe. The time constants of spectroscopic evolution derived from global fitting are included, and the solid lines are obtained via log-normal function.
Fig 6  Photophysical properties of chromophores dispersed in PMMA. (a) Steady-state UV-Vis absorption (solid lines) and PL (short dash lines) spectroscopies of C210 (red), C214 (blue), and C216 (green). (b) Normalized ultrafast kinetic traces (scatter dots) at three selected PL wavelengths of C214 dispersed in PMMA. The solid fitting lines are obtained via equation 1. (c) Scatter plots of average time constants (τ) as a function of PL wavelengths for these molecules dispersed in PMMA. The solid lines are displayed to guide the eyes.
Fig 7  Photophysical properties of chromophores dispersed in PS. (a) Steady-state UV-Vis absorption (solid lines) and PL (short dash lines) spectroscopies of C210 (red), C214 (blue), and C216 (green). (b) Normalized ultrafast kinetic traces (scatter dots) at three selected PL wavelengths of C214 dispersed in PS. The solid fitting lines are obtained via equation 1. (c) Scatter plots of average time constants (τ) as a function of PL wavelengths for these molecules dispersed in PS. The solid lines are displayed to guide the eyes.
Fig 8  (a–c) Contour plots of time-resolved PL (TRPL) spectroscopies, (d–f) evolution associated PL (EAPL) spectroscopies, and (g–i) normalized EAPL of (a, d, and g) C210, (b, e, and h) C214, and (c, f, and i) C216 grafted on PMMA. The time constants of spectroscopic evolution derived from global fitting are included, and the solid lines are obtained via log-normal function.
Fig 9  (a–c) Contour plots of time-resolved PL (TRPL) spectroscopies, (d–f) evolution associated PL (EAPL) spectroscopies, and (g–i) normalized EAPL of (a, d, and g) C210, (b, e, and h) C214, and (c, f, and i) C216 grafted on PS. The time constants of spectroscopic evolution derived from global fitting are included, and the solid lines are obtained via log-normal function.
Fig 10  Photophysical properties of chromophores grafted on alumina. (a) Steady-state UV-Vis absorption (solid lines) and PL (short dash lines) spectroscopies of C210 (red), C214 (blue), and C216 (green). (b) Normalized ultrafast kinetic traces (scatter dots) at three selected PL wavelengths of C214 grafted on alumina. The solid fitting lines are obtained via equation 1. (c) Scatter plots of average time constants (τ) as a function of PL wavelengths for these molecules grafted on alumina. The solid lines are displayed to guide the eyes.
Fig 11  Photophysical properties of chromophores grafted on titania. (a) Steady-state UV-Vis absorption (solid lines) and PL (short dash lines) spectroscopies of C210 (red), C214 (blue), and C216 (green). (b) Normalized ultrafast kinetic traces (scatter dots) at three selected PL wavelengths of C214 grafted on titania. The solid fitting lines are obtained via equation 1. (c) Scatter plots of average time constants (τ) as a function of PL wavelengths for these molecules grafted on titania. The solid lines are displayed to guide the eyes.
Fig 12  (a–c) Contour plots of time-resolved PL (TRPL) spectroscopies, (d-f) evolution associated PL (EAPL) spectroscopies, and (g–i) normalized EAPL of (a, d, and g) C210, (b, e, and h) C214, and (c, f, and i) C216 grafted on alumina. The time constants of spectroscopic evolution derived from global fitting are included, and the solid lines are obtained via log-normal function.
Fig 13  (a–c) Contour plots of time-resolved PL (TRPL) spectroscopies, (d–f) evolution associated PL (EAPL) spectroscopies, and (g–i) normalized EAPL of (a, b, and g) C210, (b, e, and h) C214, and (c, f, and i) C216 grafted on titania. The time constants of spectroscopic evolution derived from global fitting are included, and the solid lines are obtained via log-normal function.
Fig 14  (a) Dynamic PL quenching yields (QY, symbols) of C210 (red), C214 (blue), and C216 (green). (b) Time constants of electron injection as a function of PL wavelengths.
Fig 15  (a) Plots of external quantum efficiencies (EQEs) as a function of wavelengths (λ) for DSCs made with dye-grafted bilayer [(4.6+5.0)-μm-thick] titania films in collaboration with an ionic liquid composite electrolyte. (b) Wavelength-dependent light-harvesting yields (?LH) of 8.0-μm-thick mesoporous titania films grafted with dye molecules and also immersed in an ionic liquid composite electrolyte. (c) Current-voltage (J-V) curves measured under an irradiance of 100 mW·cm-2 simulated AM1.5G sunlight. On top of a DSC was laminated with an antireflection film. The aperture area of our metal mask was 0.160 cm2. (d) Open-circuit photovoltages (VOC) plotted against short-circuit photocurrent densities (JSC). The solid linear fittings were also included. (e) Plots of charges extracted from a dye-grafted titania film (QCE) versus VOC. (f) Plots of electron half-lifetimes (t1/2TPD) as a function of QCE of C210 (red), C214 (blue), and C216 (green).
Dye cm/(mol·cm-2·μm-1) τCal/(mA·cm-2) JSC/(mA·cm-2) VOC/mV FF/% PCE/%
C210 3.24×108 9.91±0.05 10.11±0.05 649±2 76.0± 0.5 5.0±0.1
C214 2.74×108 12.18±0.06 11.31± 0.06 685±2 73.8±0.3 5.7±0.1
C216 3.12×108 12.51±0.06 12.16±0.05 641±2 74.9±0.4 5.8±0.1
Table 1  Averaged photovoltaic parameters of 4 cells measured at an irradiance of 100 mW·cm–2 simulated AM1.5G sunlight.
Fig 16  Normalized absorption transients upon nanosecond laser pulse excitation of transparent titania films grafted with: (a) C210, (c) C214, and (e) C216 immersed in an inert electrolyte composed of 0.5 mol·L–1 N-butylbenzoimidazole (NBB) in EMITFSI; (b) C210, (d) C214, and (f) C216 immersed in an ionic liquid composite electrolyte. The excitation wavelength was selected according to a 0.5 optical density of dye-grafted titania films to yield an alike distribution profile of vertically excited states in our testing samples. Excitation wavelength: 579 nm for C210, 596 nm for C214, and 620 nm for C216 in contact with an inert electrolyte, while 583 nm for C210, 595 nm for C214, and 619 nm for C216 in contact with an ionic liquid composite electrolyte. Pulse fluence: 20 μJ·cm–2. Probe wavelength: 785 nm. Multi-exponential fittings were shown as solid gray lines.
1 O'Regan B. C. ; Gr?tzel M. Nature 1991, 353, 737.
doi: 10.1038/353737a0
2 Mishra A. ; Fischer M. K. R. ; B?uerle P. Angew. Chem. Int. Ed. 2009, 48, 2474.
doi: 10.1002/anie.200804709
3 Imahori H. ; Umeyama T. ; Ito S. Acc. Chem. Res. 2009, 42, 1809.
doi: 10.1021/ar900034t
4 Clifford J. N. ; Martínez-Ferrero E. ; Viterisi A. ; Palomares E. Chem. Soc. Rev. 2011, 40, 1635.
doi: 10.1039/B920664G
5 Wonneberger C. ; Li H. Adv. Mater. 2012, 24, 613.
doi: 10.1002/adma.201104447
6 Wu Y. ; Zhu W. Chem. Soc. Rev. 2013, 42, 2039.
doi: 10.1039/C2CS35346F
7 Liang M. ; Chen J. Chem. Soc. Rev. 2013, 42, 3453.
doi: 10.1039/C3CS35372A
8 Lin Y. Z. ; Huang C. H. ; Chang Y. J. ; Yeh C. W. ; Chin T. M. ; Chi K. M. ; Chou P. T. ; Watanabe M. ; Chow T. J. Tetrahedron 2014, 70, 262.
doi: 10.1016/j.tet.2013.11.072
9 Li H. ; Yang Y. ; Hou Y. ; Tang R. ; Duan T. ; Chen J. ; Wang H. ; Han H. ; Peng T. ; Chen X. ; Li Q. ; Li Z. ACS Sustainable Chem. Eng. 2014, 2, 1776.
doi: 10.1021/sc500234a
10 Kakiage K. ; Aoyama Y. ; Yano T. ; Oya K. ; Fujisawa J. I. ; Hanaya M. Chem. Commun. 2015, 51, 15894.
doi: 10.1039/C5CC06759F
11 Yao Z. ; Zhang M. ; Li R. ; Yang L. ; Qiao Y. ; Wang P. Angew. Chem. Int. Ed. 2015, 127, 6092.
doi: 10.1002/ange.201501195
12 Yao Z. ; Wu H. ; Li Y. ; Wang J. ; Zhang J. ; Zhang M. ; Guo Y. ; Wang P. Energy Environ. Sci. 2015, 8, 3192.
doi: 10.1039/C5EE02822A
13 Yao Z. ; Zhang M. ; Wu H. ; Yang L. ; Li R. ; Wang P. J. Am. Chem. Soc. 2015, 137, 3799.
doi: 10.1021/jacs.5b01537
14 Li H. ; Fang M. ; Xu T. ; Hou Y. ; Tang R. ; Chen J. ; Liu L. ; Han H. ; Peng T. ; Li Q. ; Li Z. Org. Chem. Front. 2016, 3, 233.
doi: 10.1039/C5QO00377F
15 Yang L. ; Li Y. ; Chen S. ; Zhang J. ; Zhang M. ; Wang P. Acta Phys. -Chim. Sin. 2016, 32, 329.
doi: 10.3866/PKU.WHXB201511031
杨林; 李阳; 陈淑; 张静; 张敏; 王鹏. 物理化学学报, 2016, 32, 329.
doi: 10.3866/PKU.WHXB201511031
16 Weng X. L. ; Wang Y. ; Jia C. Y. ; Wan Z. Q. ; Chen X. M. ; Yao X. J. Acta Phys. -Chim. Sin. 2016, 32, 1990.
doi: 10.3866/PKU.WHXB201605031
翁小龙; 王艳; 贾春阳; 万中全; 陈喜明; 姚小军. 物理化学学报, 2016, 32, 1990.
doi: 10.3866/PKU.WHXB201605031
17 Xiao A. ; Lu H. ; Zhao Y. ; Luo G. G. Acta Phys. -Chim. Sin. 2016, 32, 2968.
doi: 10.3866/PKU.WHXB201609194
肖岸; 卢辉; 赵阳; 骆耿耿. 物理化学学报, 2016, 32, 2968.
doi: 10.3866/PKU.WHXB201609194
18 Li Z. G. ; Lu T. ; Gao H. ; Zhang Q. ; Li M. J. ; Ren W. ; Lu W. C. Acta Phys. -Chim. Sin. 2017, 33, 1789.
doi: 10.3866/PKU.WHXB201705082
李重杲; 卢天; 高恒; 张庆; 李敏杰; 任伟; 陆文聪. 物理化学学报, 2017, 33, 1789.
doi: 10.3866/PKU.WHXB201705082
19 Ren Y. ; Liu J. ; Zheng A. ; Dong X. ; Wang P. Adv. Sci. 2017, 1700099.
doi: 10.1002/advs.201700099
20 Rehm J. M. ; McLendon G. L. ; Nagasawa Y. ; Yoshihara K. ; Moser J. ; Gr?tzel M. J. Phys. Chem. 1996, 100, 9577.
doi: 10.1021/jp960155m
21 Tachibana Y. ; Rubtsov I. V. ; Montanari I. ; Yoshihara K. ; Klug D. R. ; Durrant J. R. J. Photoch. Photobio. A 2001, 142, 215.
doi: 10.1016/S1010-6030(01)00516-0
22 Luo L. ; Lo C. F. ; Lin C. Y. ; Chang I. J. ; Diau W. G. J. Phys. Chem. B 2006, 110, 410.
doi: 10.1021/jp055365q
23 Martín C. ; Zió?ek M. ; Marchena M. ; Douhal A. J. Phys. Chem. C 2011, 115, 23183.
doi: 10.1021/jp203489u
24 Adamo C. ; Jacquemin D. Chem. Soc. Rev. 2013, 42, 845.
doi: 10.1039/C2CS35394F
25 Fakis M. ; Hrobárik P. ; Yushchenko O. ; SigmundováI. ; Koch M. ; Rosspeintner A. ; Stathatos E. ; Vauthey E. J. Phys. Chem. C 2014, 118, 28509.
doi: 10.1021/jp509971q
26 Ai X. ; Guo J. ; Anderson N. A. ; Lian T. J. Phys. Chem. B 2004, 108, 12795.
doi: 10.1021/jp0483977
27 Fakis M. ; Stathatos E. ; Tsigaridas G. ; Giannetas V. ; Persephonis P. J. Phys. Chem. C 2011, 115, 13429.
doi: 10.1021/jp201143n
28 Yang L. ; Chen S. ; Zhang J. ; Wang J. ; Zhang M. ; Dong X. ; Wang P. J. Mater. Chem. A 2017, 5, 3514.
doi: 10.1039/C6TA10506H
29 Li Y. ; Wang J. ; Yuan Y. ; Zhang M. ; Dong X. ; Wang P. Phys. Chem. Chem. Phys. 2017, 19, 2549.
doi: 10.1039/C6CP07916D
30 Chen S. ; Yang L. ; Zhang J. ; Yuan Y. ; Dong X. ; Wang P. ACS Photonics 2017, 4, 165.
doi: 10.1021/acsphotonics.6b00772
31 Li R. ; Zhang M. ; Yan C. ; Yao Z. ; Zhang J. ; Wang P. ChemSusChem 2015, 8, 97.
doi: 10.1002/cssc.201402806
32 Yang L. ; Yao Z. ; Liu J. ; Wang J. ; Wang P. ACS Appl. Mater. Inter. 2016, 8, 9839.
doi: 10.1021/acsami.6b02075
33 Shank C. V. Science 1986, 233, 1276.
doi: 10.1126/Science.233.4770.1276
34 Fleming G. R. ; van Grondelle R. Current opinion in structural biology: Femtosecond spectroscopy of photosynthetic lightharvesting systems Elsevier: Holland, 1997, Vol. 7, pp. 738- 748.
35 McCamant D. W. ; Kukura P. ; Mathies R. A. J. Phys. Chem. A 2003, 107, 8208.
doi: 10.1021/jp030147n
36 Trotzky S. ; Hoyer T. ; Tuszynski W. ; Lienau C. ; Parisi J. J. Phys. D: Appl. Phys. 2009, 42, 055105.
doi: 10.1088/0022-3727/42/5/055105
37 Li R. ; Lv X. ; Shi D. ; Zhou D. ; Cheng Y. ; Zhang G. ; Wang P. J. Phys. Chem. C 2009, 113, 7469.
doi: 10.1021/jp900972v
38 Wang P. ; Zakeeruddin S. M. ; Comte P. ; Charvet R. ; Humphry-Baker R. ; Gr?tzel M. J. Phys. Chem. B 2003, 107, 14336.
doi: 10.1021/jp0365965
39 Liu J. ; Li R. ; Si X. ; Zhou D. ; Shi Y. ; Wang Y. ; Jing X. ; Wang P. Energy Environ. Sci. 2010, 3, 1924.
doi: 10.1021/jp0365965
40 Cai N. ; Wang Y. ; Xu M. ; Fan Y. ; Li R. ; Zhang M. ; Wang P. Adv. Funct. Mater. 2013, 23, 1846.
doi: 10.1002/adfm.201202562
41 Zhang J. ; Yao Z. ; Cai N. ; Yang L. ; Xu M. ; Li R. ; Zhang M. ; Dong X. ; Wang P. Energy Environ. Sci. 2013, 6, 1604.
doi: 10.1039/C3EE40375K
42 Snellenburg J. J. ; Laptenok S. P. ; Seger R. ; Mullen K. M. ; van Stokkum I. H. M. J. Stat. Softw. 2012, 49, 1.
doi: 10.18637/jss.v049.i03
43 Lanzani G. ; Nisoli M. ; De Silvestri S. ; Tubino R. Chemical Physics Letters: Femtosecond vibrational and torsional energy redistribution in photoexcited oligothiophenes Elsevier: Holland 1996, Vol. 251, pp. 339- 345.
44 Glasbeek M. ; Zhang H. Chem. Rev. 2004, 104, 1929.
doi: 10.1021/cr0206723
45 Amdursky N. ; Erez Y. ; Huppert D. Acc. Chem. Res. 2012, 45, 1548.
doi: 10.1021/ar300053p
46 Nelson T. ; Fernandez-Alberti S. ; Roitberg A. E. ; Tretiak S. Acc. Chem. Res. 2014, 47, 1155.
doi: 10.1021/ar400263p
47 Oliver T. A. A. ; Lewis N. H. C. ; Fleming G. R. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 10061.
doi: 10.1073/pnas.1409207111
48 Klymchenko A. S. ; Demchenko A. R. Methods in Enzymology: Chapter 3 Multiparametric Probing of Microenvironment with Solvatochromic Fluorescent Dyes Elsevier: Holland, 2008, Vol. 450, pp. 37- 58.
49 Shemesh D. ; Sobolewski A. L. ; Domcke W. Phys. Chem. Chem. Phys. 2010, 12, 4899.
doi: 10.1039/B927024H
50 Qian J. ; Brouwer A. M. Phys. Chem. Chem. Phys. 2010, 12, 12562.
doi: 10.1039/C003419C
51 O'Regan B. C. ; Durrant J. R. Acc. Chem. Res. 2009, 42, 1799.
doi: 10.1021/ar900145z
52 Fabregat-Santiago F. ; Garcia-Belmonte G. ; Mora-Séro I. ; Bisquert J. Phys. Chem. Chem. Phys. 2011, 13, 9083.
doi: 10.1039/C0CP02249G
53 Bisquert J. ChemPhysChem 2011, 12, 1633.
doi: 10.1002/cphc.201100248
[1] 郑江波, 陈智明, 胡志诚, 张杰, 黄飞. 新型基于二氟苯并噻二唑和双噻吩丙烯腈共轭聚合物的设计、合成及光伏性能[J]. 物理化学学报, 2017, 33(8): 1635-1643.
[2] 陈军军, 史成武, 张正国, 肖冠南, 邵章朋, 李楠楠. 4.81%光电转换效率的全固态致密PbS量子点薄膜敏化TiO2纳米棒阵列太阳电池[J]. 物理化学学报, 2017, 33(10): 2029-2034.
[3] 陈海龙, 边红涛, 郑俊荣. 基于超快多维振动光谱技术解析分子体系的三维空间构型[J]. 物理化学学报, 2017, 33(1): 40-62.
[4] 晒旭霞, 李丹, 刘双双, 李浩, 王鸣魁. 钙钛矿太阳电池吸光层材料研究进展[J]. 物理化学学报, 2016, 32(9): 2159-2170.
[5] 刘晓灵, 宋继梅, 董纳, 胡刚, 杨捷, 司维, 李文慧. 鳞状BiOBr/Bi2WO6的合成及其吸附性能[J]. 物理化学学报, 2016, 32(7): 1844-1850.
[6] 张雪, 韩洋, 柴双志, 胡南滔, 杨志, 耿会娟, 魏浩. Cu2ZnSn(S,Se)4薄膜太阳电池研究进展[J]. 物理化学学报, 2016, 32(6): 1330-1346.
[7] 刘雪朋, 孔凡太, 陈汪超, 于婷, 郭福领, 陈健, 戴松元. 有机空穴传输材料在钙钛矿太阳电池中的应用[J]. 物理化学学报, 2016, 32(6): 1347-1370.
[8] 周立, 朱俊, 徐亚峰, 邵志鹏, 张旭辉, 叶加久, 黄阳, 张昌能, 戴松元. 绝缘氧化物包覆对钙钛矿太阳电池性能及界面电荷复合动力学的影响[J]. 物理化学学报, 2016, 32(5): 1207-1213.
[9] 王艳青, 李龙, 聂林辉, 李楠楠, 史成武. 两步沉积法制备Br或Cl掺杂的有机-无机杂化钙钛矿太阳电池[J]. 物理化学学报, 2016, 32(11): 2724-2730.
[10] 杨林, 李阳, 陈淑, 张静, 张敏, 王鹏. 有机染料敏化太阳电池中激发态弛豫和电子注入的超快光谱研究[J]. 物理化学学报, 2016, 32(1): 329-336.
[11] 王楠, 梁柱荣, 王欣, 徐雪青, 方军, 王军霞, 郭华芳. 耦联剂辅助吸附法制备CuInS2量子点敏化太阳电池[J]. 物理化学学报, 2015, 31(7): 1331-1337.
[12] 乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 郝秋艳, 刘彩池. nc-Si:H/c-Si硅异质结太阳电池中本征硅薄膜钝化层的优化[J]. 物理化学学报, 2015, 31(6): 1207-1214.
[13] 郝彦忠, 郭志敏, 孙宝, 裴娟, 王尚鑫, 李英品. Sb2S3纳米粒子修饰ZnO纳米片微纳分级结构的光电化学性能[J]. 物理化学学报, 2015, 31(11): 2109-2116.
[14] 桃李, 霍志鹏, 王露, 戴松元. 高相转变温度的离子凝胶电解质基准固态染料敏化太阳电池[J]. 物理化学学报, 2015, 31(1): 121-127.
[15] 苏佳, 芦姗, 王莎莎, 张雪华, 付玉彬, 贺涛. 聚合溶液pH值对染料敏化太阳电池中聚吡咯对电极结构和性能的影响[J]. 物理化学学报, 2014, 30(8): 1487-1494.