Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (5): 503-513    DOI: 10.3866/PKU.WHXB201709252
所属专题: 密度泛函理论中的化学概念特刊
论文     
通过价层电子密度分析展现分子电子结构
卢天*(),陈沁雪
Revealing Molecular Electronic Structure via Analysis of Valence Electron Density
Tian LU*(),Qinxue CHEN
 全文: PDF(3997 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

迄今已有众多实空间函数被提出用来揭示化学上感兴趣的分子电子结构特征,例如化学键、孤对电子和多中心电子共轭。在这些分析方法中,电子定域化函数(ELF)、电子密度的拉普拉斯(∇2ρ)和变形密度(ρdef)被广泛用于实际研究。众所周知,分析分子的总电子密度无法像以上提及的方法那样展现出与分子电子结构有关的丰富的信息。但是,在本文中,通过数个实例以及通过与ELF、∇2ρρdef的对比,我们指出若只关注价层电子密度分布,分子电子结构特征也是可能被探究的。我们发现对大多数情况,对非常简单的价层电子密度的分析也可以给出与ELF、∇2ρρdef分析类似的信息,并且这种分析具有计算复杂度更低的额外优点。我们希望本文的工作可以使得化学家们关注长期被忽视的价层电子密度所具有的重要价值。也值得注意的是,价层电子密度分析并非完全没有缺点,当这种方法无法提供丰富信息的时候,研究者仍需借助于其它类型的分析手段。

关键词: 电子密度波函数分析化学键电子定域化函数分子中的原子密度泛函理论电子密度的拉普拉斯    
Abstract:

Numerous real space functions have been purposed so far for unveiling chemically interesting molecular electronic structure characteristics, such as chemical bonds, lone pairs, and multicenter electronic conjugations. Among these analysis methods, electron localization function (ELF), Laplacian of electron density (∇2ρ), and deformation density (ρdef) were widely employed in practical research work. It is well known that the analysis of total molecular electron density is not sufficient for revealing much information about the molecular electronic structure like the above-mentioned methods. However, in this work, using several instances and by comparing with the ELF, ∇2ρ, and ρdef values, we show that it is possible to explore molecular electronic structure characteristics if one solely focuses on investigating the valence electron density distribution. It is found that for most cases, analysis of the very simple valence electron density conveys analogous information as ELF, ∇2ρ and ρdef analyses, with additional advantage of reduced computational complexity. We hope that this work will bring chemists' attention to the high importance of valence electron density, which has been largely ignored for a long time. It should also be noticed that the valence electron density analysis is not free from drawbacks, and when this method is unable to provide an informative picture, one has to use other analysis methods.

Key words: Electron density    Wavefunction analysis    Chemical bond    Electron localization Function    Atoms in molecules    Density functional theory    Laplacian of electron density    Deformation density
收稿日期: 2017-08-31 出版日期: 2017-09-25
中图分类号:  O641  
通讯作者: 卢天     E-mail: sobereva@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢天
陈沁雪

引用本文:

卢天,陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.

Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201709252        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I5/503

Fig 1  Valence, core and total electron density along the axis of HCN molecule. color online.
Fig 2  Color-filled map of valence electron density and ELF, as well as contour line map of ∇2ρ and ρdef of HCN molecule. In the color-filled map, the region with value higher than the upper limit of color scale is depicted as white. The X and Y axes correspond to coordinate (since it does not affect discussion, for brevity the scale is hidden, similarly hereinafter). In the contour line map, solid red line and blue dash line represent positive and negative regions, respectively. color online.
Fig 3  Isosurface map of valence electron density and ∇2ρ of ethane.
Fig 4  Color-filled map of valence electron density (a) and ELF (b), as well as contour line map of ρdef (c) and ∇2ρ (d) of cyclopropane in the plane defined by the three carbon atoms. In the contour line map, solid red line and blue dash line correspond to positive and negative, respectively. For clarity, the nuclei of carbons are linked by purple straight line. color online.
Fig 5  Color-filled map of (a) valence electron density, (b) ELF, (c) ∇2ρ and (d) ρdef of B13+ cluster in its plane.
Fig 6  Isosurface maps of valence electron density, ELF, ∇2ρ and ρdef of Li5+ cluster. Isovalues are indicated in the parentheses. In the ρdef map, the blue isosurfaces correspond to negative regions. color online.
Fig 7  Color-filled map of valence electron density of CH3Br (a) and that of NH3 (b). Optimized geometry of CH3Br…NH3 dimer is shown in (c).
Fig 8  Energy variation along intrinsic reaction path (IRC) of Diels-Alder reaction between 1, 3-butadiene and ethene. Isosurfaces of valence electron density of reactant (a), transition state (b), a featured IRC point (c) and product (d) are plotted as insets. Isovalues of all graphs are set to 0.25. Indices of carbon atoms are labelled in (a).
Fig 9  Attractors of valence electron density of ethane (a) and acetonitrile (b). The integral of valence electron density in the corresponding basins are labelled. (c) Attractors of ELF of acetonitrile along with integral of total electron density in the ELF basins. color online.
Fig 10  Color-filled map of valence electron density of fluoroethane in its F-C-C-H plane. Different color scales are used for (a) and (b). color online.
1 Koch W. ; Holthausen M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH Verlag GmbH: Weinheim, Germany 2001, pp.24- 28.
2 Parr R. G. ; Yang W. J. Am. Chem. Soc. 1984, 106, 4049.
doi: 10.1021/ja00326a036
3 Fu R. ; Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2014, 30, 628.
doi: 10.3866/PKU.WHXB201401211
付蓉; 卢天; 陈飞武. 物理化学学报, 2014, 30, 628.
doi: 10.3866/PKU.WHXB201401211
4 Cao J. S. ; Ren Q. ; Chen F. W. ; Lu T. Sci. China Chem. 2015, 45, 1281.
doi: 10.1007/s11426-015-5494-7
曹静思; 任庆; 陈飞武; 卢天. 中国科学:化学, 2015, 45, 1281.
doi: 10.1007/s11426-015-5494-7
5 Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2012, 28, 1.
doi: 10.3866/PKU.WHXB2012281
卢天; 陈飞武. 物理化学学报, 2012, 28, 1.
doi: 10.3866/PKU.WHXB2012281
6 Bader F. W. Atoms in Molecules: A Quantum Theory New York, USA: Oxford University Press, 1994.
7 Matta C. F. ; Boyd R. J. The Quantum Theory of Atoms in Molecules-from Solid State to DNA and Drug Design; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 2007.
8 Lu T. ; Chen F. J. Phys. Chem. A 2013, 117, 3100.
doi: 10.1021/jp4010345
9 Gillespie R. J. ; Popelier P. L. A. Chemical Bonding and Molecular Geometry-From Lewis to Electron Densities New York, NY, USA: Oxford University Press, 2001, pp. 163- 180.
10 Becke A. D. ; Edgecombe K. E. J. Chem. Phys. 1990, 92, 5397.
doi: 10.1063/1.458517
11 Lu T. ; Chen F. W. Acta Phys. -Chim. Sin. 2011, 27, 2786.
doi: 10.3866/PKU.WHXB20112786
卢天; 陈飞武. 物理化学学报, 2011, 27, 2786.
doi: 10.3866/PKU.WHXB20112786
12 Poater J. ; Duran M. ; Solà M. ; Silvi B. Chem. Rev. 2005, 105, 3911.
doi: 10.1021/cr030085x
13 Manzetti S. ; Lu T. RSC Adv. 2013, 3, 25881.
doi: 10.1039/c3ra41572d
14 Manzetti S. ; Lu T. ; Behzadi H. ; Estrafili M. D. ; Thi H. L. T. ; Vach H. RSC Adv. 2015, 5, 78192.
doi: 10.1039/C5RA17148B
15 Emamian S. ; Lu T. ; Moeinpour F. RSC Adv. 2015, 5, 62248.
doi: 10.1039/C5RA08614K
16 Schmider H. L. ; Becke A. D. J. Mol. Struct. THEOCHEM 2000, 527, 51.
doi: 10.1016/s0166-1280(00)00477-2
17 Astakhov A. A. ; Tsirelson V. G. Chem. Phys. 2014, 435, 49.
doi: 10.1016/j.chemphys.2014.03.006
18 De Silva P. ; Corminboeuf C. J. Chem. Theory Comput. 2014, 10, 3745.
doi: 10.1021/ct500490b
19 Jacobsen H. Chem. Phys. Lett. 2013, 582, 144.
doi: 10.1016/j.cplett.2013.07.027
20 Hirshfeld F. L. Theor. Chim. Acta 1977, 44, 129.
doi: 10.1007/bf00549096
21 Lu T. ; Chen F. J. Theor. Comp. Chem. 2012, 11, 163.
doi: 10.1142/S0219633612500113
22 Dunitz J. D. ; Schweizer W. B. ; Seiler P. Helv. Chim. Acta 1983, 66, 123.
doi: 10.1002/hlca.19830660113
23 Eisenstein M. Acta Crystallogr. Sect. B 1979, 35, 2614.
doi: 10.1107/S0567740879010001
24 Cai Y. ; Luo S. ; Wang Z. ; Xiong J. ; Gu H. J. Materiomics 2017, 3, 130.
doi: 10.1016/j.jmat.2016.12.005
25 Cameron T. S. ; Borecka B. ; Kwiatkowski W. J. Am. Chem. Soc. 1994, 116, 1211.
doi: 10.1021/ja00083a006
26 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Petersson G. A. ; Nakatsuji H. ; et al Gaussian 16; Gaussian Inc.: Wallingford, CT 2016.
27 Stephens P. J. ; Devlin F. J. ; Chabalowski C. F. ; Frisch M. J. J. Phys. Chem. 1994, 98, 11623.
doi: 10.1021/j100096a001
28 Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
doi: 10.1039/b508541a
29 Lu T. ; Chen F. J. Comput. Chem. 2012, 33, 580.
doi: 10.1002/jcc.22885
30 Website of Multiwfn program(accessed Aug 15, 2017).Website of Multiwfn program. http://sobereva.com/multiwfn(accessed Aug 15, 2017).
31 Multiwfn Manualversion 3.4, Section 3.7.4, available at, (accessed Aug 15, 2017).Multiwfn Manual, version 3.4, Section 3.7.4, available at http://sobereva.com/multiwfn(accessed Aug 15, 2017).
32 Zhao Y. ; Truhlar D. Theor. Chem. Acc. 2008, 120, 215.
doi: 10.1007/s00214-007-0310-x
33 Wüest A. ; Merkt F. J. Chem. Phys. 2003, 118, 8807.
doi: 10.1063/1.1566944
34 Santos J. C. ; Andres J. ; Aizman A. ; Fuentealba P. J. Chem. Theory Comput. 2005, 1, 83.
doi: 10.1021/ct0499276
35 Politzer P. ; Lane P. ; Concha M. C. ; Ma Y. ; Murray J. S. J. Mol. Model. 2007, 13, 305.
doi: 10.1007/s00894-006-0154-7
36 Clark T. WIREs: Comp. Mol. Sci. 2013, 3, 13.
doi: 10.1002/wcms.1113
37 Kozuch S. ; Martin J. M. L. J. Chem. Theory Comput. 2013, 9, 1918.
doi: 10.1021/ct301064t
38 Jensen F. Introduction to Computational Chemistry; John Wiley & Sons: West Sussex, UK 2007, pp.487- 492.
39 Silvi B. ; Savin A. Nature 1994, 371, 683.
doi: 10.1038/371683a0
40 Fuentealba P. ; Chamorro E. ; Santos J. C. Understanding and Using the Electron Localization Function. In Theoretical Aspects of Chemical Reactivity; Toro-Labbé, A., Ed., Elsevier B.V.: Amsterdam, The Netherlands 2007, p. 57.
41 Bratsch S. G. J. Chem. Educ. 1985, 62, 101.
doi: 10.1021/ed062p101
42 Cotton F. A. ; Murillo C. A. ; Walton R. A. Multiple Bonds between Metal Atoms; Springer Science and Business Media, Inc.: New York, USA 2005.
[1] 许文武,高嶷. 巯基保护的中空金纳米球[J]. 物理化学学报, 2018, 34(7): 770-775.
[2] 沈艳芳,程龙玖. 八电子Pd4四面体团簇的电子结构稳定性分析[J]. 物理化学学报, 2018, 34(7): 830-836.
[3] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[4] 尹凡华,谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256-262.
[5] 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[6] 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[7] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[8] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[9] 刘玉玉,李杰伟,薄一凡,杨磊,张效霏,解令海,仪明东,黄维. 芴基张力半导体结构和光电性质的理论研究[J]. 物理化学学报, 2017, 33(9): 1803-1810.
[10] 徐位云,汪丽莉,宓一鸣,赵新新. Fe原子吸附对单层WS2结构和性质的影响[J]. 物理化学学报, 2017, 33(9): 1765-1772.
[11] 韩波,程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[12] 郭姿含,胡竹斌,孙真荣,孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.
[13] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[14] 韩磊,彭丽,蔡凌云,郑旭明,张富山. 液态聚乙二醇CH2剪切振动和扭转振动——拉曼光谱和密度泛函理论计算[J]. 物理化学学报, 2017, 33(5): 1043-1050.
[15] 李玲玲,陈韧,戴戬,孙野,张作良,李晓亮,聂小娃,宋春山,郭新闻. 苯和甲醇在H-ZSM-5催化剂上甲基化的反应机理[J]. 物理化学学报, 2017, 33(4): 769-779.