Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (7): 781-785    DOI: 10.3866/PKU.WHXB201711131
所属专题: 原子水平上精确控制纳米簇和纳米粒子
论文     
具有精准结构Zr-O及Zr/Ti-O纳米团簇的深共熔溶剂热合成
NARAYANAM Nagaraju1,2,CHINTAKRINDA Kalpana1,方伟慧1,张磊1,*(),张健1
1 中国科学院福建物质结构研究所结构化学重点实验室,福州 350002
2 中国科学院大学,北京 100049
Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis
Nagaraju NARAYANAM1,2,Kalpana CHINTAKRINDA1,Weihui FANG1,Lei ZHANG1,*(),Jian ZHANG1
1 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
2 International College, University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
 全文: PDF(718 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

近年来,深共熔溶剂热作为一种绿色合成方法被广泛用于多种杂化功能材料的合成。在本研究中,这一合成方法被引入到多核Zr-和Zr/Ti-O纳米团簇的制备,成功获得被邻菲罗啉、苯酚等共轭配体修饰的Zr6以及Ti11Zr4团簇。此方法将为具有精准结构信息的被较多发色团包覆的纳米团簇的合成开辟新的技术路线。此外,光催化分解水产氢实验结果表明,由于具有不同的簇核环境,这两种纳米团簇表现出不同的分散性及与之相关的产氢活性。因此,该研究也为探索金属氧簇材料的结构–性能关系以及结构设计原则提供了借鉴。

关键词: 纳米团簇深共熔溶剂热产氢    
Abstract:

Atomically precise nanoclusters form an important class of functional materials that have recently attracted research interest for their unique properties and easily tunable surface functionalities. Core-shell nanomaterials with precise structural information can be produced to better understand the structure–property relationships for different applications. Polyoxo-titanium clusters (PTCs) are such a kind of nanomaterial for different functional applications in catalysis, photovoltaics, ceramics, etc. However, the high bandgap of semiconductive PTCs is the limiting factor in their practical solar application in the visible region of sunlight. The development of PTCs with different surface-bound ligands is an emerging area of research in the design and synthesis of core-shell nanoclusters with reduced bandgaps. It has been extensively reported that the polynuclear growth of PTCs requires molecular-level water supply in reactions. Moreover, it is important to identify more environment-friendly synthetic methods. Deep eutectic-solvothermal (DES) synthesis is an emerging green method for the synthesis of different crystalline materials. The hygroscopic nature of DES should enhance the provision of water during polynuclear growth of nanoclusters. Hence, we chose to synthesize different kinds of PTCs using DES as solvent. Two nanoclusters, Zr-oxo (PTC-65) and Zr/Ti-oxo (PTC-66) clusters having surface-bound 1, 10-phenanthroline (1, 10-phn) and phenol ligands, were successfully synthesized using this approach; 1, 10-phn was employed as the precursor in the synthetic reaction, and phenol was not employed directly in the chemical reaction, but was supplied from the DES solvent used in the reaction. In the presence of chromophoric ligands, 1, 10-phn and phenol are believed to enhance the light absorption properties of the resulting functional nanomaterials. Their crystal structure revealed that they form core-shell mimics with Zr-oxo and Ti/Zr-oxo core units having surface-bound shell ligands. Based on their different structural characteristics, photocatalytic hydrogen evolution studies were performed on these two functional materials using an aqueous solution of H2O (50 mL)/triethanol amine (10 mL). Interestingly, PTC-65 formed a turbid solution, whereas PTC-66 formed a clear solution. The possible reasons for their different dispersion behaviors are widely discussed, with emphasis on their structure–property relationships. This study provides a potential tool for the homogenization of Ti-O materials to improve their photocatalytic activities. Moreover, the success of our work confirms that deep eutectic-solvothermal synthesis can be an effective method for cluster preparation. Many other interesting polynuclear complexes like polyoxometalates, chalcogenides, and noble-metal clusters could be obtained by this synthetic methodology.

Key words: Nanocluster    Titanium    Zirconium    Deep-eutectic solvothermal    H2 evolution
收稿日期: 2017-10-17 出版日期: 2017-11-13
中图分类号:  O641  
基金资助: 国家自然科学基金(21473202);国家自然科学基金(21673238);福建省自然科学基金(2017J06009)
通讯作者: 张磊     E-mail: LZhang@fjirsm.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
NARAYANAM Nagaraju
CHINTAKRINDA Kalpana
方伟慧
张磊
张健

引用本文:

NARAYANAM Nagaraju,CHINTAKRINDA Kalpana,方伟慧,张磊,张健. 具有精准结构Zr-O及Zr/Ti-O纳米团簇的深共熔溶剂热合成[J]. 物理化学学报, 2018, 34(7): 781-785, 10.3866/PKU.WHXB201711131

Nagaraju NARAYANAM,Kalpana CHINTAKRINDA,Weihui FANG,Lei ZHANG,Jian ZHANG. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis. Acta Phys. -Chim. Sin., 2018, 34(7): 781-785, 10.3866/PKU.WHXB201711131.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201711131        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I7/781

Scheme 1  Schematic representation of synthesis of PTC-65 & -66 using deep-eutectic solvothermal synthesis.
PTC-65 PTC-66
Chemical formula C120H88N12O16Zr6 C168Cl3H127N16O36Ti11Zr4
Formula weight 2501.39 3943.68
T/K 293 293
λ 1.54178 1.54178
Crystal system trigonal monoclinic
Space group R-3 P-1
a 19.349 17.8207
b 19.349 19.3447
c 28.716 28.8121
α/(°) 90 77
β/(°) 90 80
γ/(°) 120 77
V3 9311 9351.1
Z 3 2
ρcalc/(g∙cm−3) 1.509 1.364
μ/mm−1 4.565 0.766
Reflections 6475 75187
Independent (Rint) 3863 31333
GOF on F2 1.176 1.349
R1 a, wR2 [I > 2σ(I)] b 0.1073, 3290 0.1386, 0.3988
Table 1  Crystal structure parameters of PTC-65 & -66.
Fig 1  Structures of the Zr-oxo and Ti/Zr-oxo clusters decorated with 1, 10-phn and phenol chromophores synthesized in DES. (a) PTC-65 & (d) PTC-66; Core units of (b) PTC-65 and (c) PTC-66 (Color codes: Zr-Pale Blue; Ti-Pale green; N-Blue; O-red; C-Pale black.)
Fig 2  Comparative photocatalytic hydrogen evolution studies (Solutions are shown inset) (a); comparative hydrogen evolution rates of PTC-65 & PTC-66 (b).
1 Indranath C. ; Thalappil P. Chem. Rev. 2017, 117, 8208.
doi: 10.1021/acs.chemrev.6b00769
2 Goswami N. ; Zheng K. ; Xie J. Nanoscale 2014, 6, 13328.
doi: 10.1039/C4NR04561K
3 Yuan X. ; Luo Z. ; Yu Y. ; Yao Q. ; Xie J. Chem. Asian J. 2013, 8, 858.
doi: 10.1002/asia.201201236
4 Zhou Y. ; Li Z. M. ; Zheng K. ; Li G. Acta Phys. -Chim. Sin. 2018, 34 (7), 786.
doi: 10.3866/PKU.WHXB201709292
周洋; 李志敏; 郑凯; 李杲. 物理化学学报, 2018, 34 (7), 786.
doi: 10.3866/PKU.WHXB201709292
5 Fang J. ; Zhang B. ; Yao Q. ; Yang Y. ; Xie J. ; Yan N. Coord. Chem. Rev. 2016, 322, 1.
doi: 10.1016/j.ccr.2016.05.003
6 Zhu M. ; Li M. B. ; Yao C. H. ; Xia N. ; Zhao Y. ; Yan N. ; Liao L. W. ; Wu Z. K. Acta Phys. -Chim. Sin. 2018, 34 (7), 792.
doi: 10.3866/PKU.WHXB201710091
祝敏; 李漫波; 姚传好; 夏楠; 赵燕; 闫楠; 廖玲文; 伍志鲲. 物理化学学报, 2018, 34 (7), 792.
doi: 10.3866/PKU.WHXB201710091
7 Sun G. D. ; Kang X. ; Jin S. ; Li X. W. ; Hu D. Q. ; Wang S. X. ; Zhu M. Z. Acta Phys. -Chim. Sin. 2018, 34 (7), 799.
doi: 10.3866/PKU.WHXB201710124
孙国栋; 康熙; 金山; 李小武; 胡大乔; 汪恕欣; 朱满洲. 物理化学学报, 2018, 34 (7), 799.
doi: 10.3866/PKU.WHXB201710124
8 Chaudhuri R. G. ; Paria S. Chem. Rev. 2012, 112, 2373.
doi: 10.1021/cr100449n
9 Xiao P. W. ; Zhao L ; Sui Z. Y. ; Han B. H. Langmuir 2017, 33, 6038.
doi: 10.1021/acs.langmuir.7b00331
10 Tominaga C. ; Hikosou D. ; Osaka I. ; Kawasak H. Acta Phys. -Chim. Sin. 2018, 34 (7), 805.
doi: 10.3866/PKU.WHXB201710271
11 Li N. ; Matthews P. D. ; Luob H. K. ; Wright D. S. Chem. Commun. 2016, 52, 11180.
doi: 10.1039/C6CC03788G
12 Snoeberger R. C. Ⅲ ; Young K. J. ; Tang J. ; Allen L. J. ; Crabtree R. H. ; Brudvig G. W. ; Coppens P. ; Batista V. S. ; Benedict J. B. J. Am. Chem. Soc. 2012, 134, 8911.
doi: 10.1021/ja301238t
13 Fang W. H. ; Wang J. F. ; Zhang L. ; Zhang J. Chem. Mater. 2017, 29, 2681.
doi: 10.1021/acs.chemmater.7b00324
14 Zhao Z. ; Zhang X. Y. ; Zhang G. Q. ; Liu Z. Y. ; Qu D. ; Miao X. ; Feng P. Y. ; Sun Z. C. Nano Res. 2015, 8, 4061.
doi: 10.1007/s12274-015-0917-5
15 Coppens P. ; Chen Y. ; Trzop E. Chem. Rev. 2014, 114, 9645.
doi: 10.1021/cr400724e
16 Liu J. X. ; Gao M. Y. ; Fang W. H. ; Zhang L. ; Zhang J. Angew. Chem. Int. Ed. 2016, 55, 5160.
doi: 10.1002/anie.201510455
17 Lv Y. ; Cheng J. ; Steiner A. ; Gan L. ; Wright D. S. Angew. Chem. Int. Ed. 2014, 53, 1934.
doi: 10.1002/anie.201307721
18 Sokolow J. D. ; Trzop E. ; Chen Y. ; Tang J. ; Allen L. J. ; Crabtree R. H. ; Benedict J. B. ; Coppens. P. J. Am. Chem. Soc. 2012, 134, 11695.
doi: 10.1021/ja303692r
19 Wagle D. V. ; Zhao H. ; Baker G. A. Acc. Chem. Res. 2014, 7, 2299.
doi: 10.1021/ar5000488
20 Cooper E. R. ; Andrews C. D. ; Wheatley P. S. ; Webb P. B. ; Wormald P. ; Morris R. E. Nature 2004, 430, 1012.
doi: 10.1038/nature02860
21 Zhang Q. ; Vigier K. D. O. ; Royer S. ; Jerome F. Chem. Soc. Rev. 2012, 41, 7108.
doi: 10.1039/C2CS35178A
22 Smith E. L. ; Abbott A. P. ; Ryder K. S. Chem. Rev. 2014, 114, 11060.
doi: 10.1021/cr300162p
23 Zhang J. ; Wu T. ; Chen S. ; Feng P. ; Bu X. Angew. Chem. Int. Ed. 2009, 48, 3486.
doi: 10.1002/anie.200900134
24 Wragg D. S. ; Slawin A. M. Z. ; Morris R. E. Solid State Sci. 2009, 11, 411.
doi: 10.1016/j.solidstatesciences.2008.09.008
25 Nagaraju N. ; Fang W. H. ; Kalpana C. ; Zhang L. ; Zhang J. Chem. Commun. 2017, 53, 8078.
doi: 10.1039/c7cc04388k
26 Sheldrick G. M. Acta Crystallogr. Sect. A 2008, 64, 112.
doi: 10.1107/S0108767307043930
27 Sheldrick SHELXL-2014 G. M. University of Gottingen, Germany, 2014.
28 Kickelbick G. ; Wiede P. ; Schubert U. Inorg. Chim. Acta 1999, 284, 1.
doi: 10.1016/S0020-1693(98)00251-5
29 Gao M. Y. ; Wang F. ; Gu Z. G. ; Zhang D. X. ; Zhang L. ; Zhang Z. J. Am. Chem. Soc. 2016, 138, 2556.
doi: 10.1021/jacs.6b00613
30 Zhang G. ; Liu C. ; Long D. L. ; Cronin L. ; Tung C. H. ; Wang Y. J. Am. Chem. Soc. 2016, 138, 11097.
doi: 10.1021/jacs.6b06290
[1] 毕富珍,郑晓,任志勇. 甲胺基-甲脒基混合钙钛矿的第一性原理研究[J]. 物理化学学报, 2019, 35(1): 69-75.
[2] 杨丽娜,黄莉,宋雪洋,贺文雪,姜泳,孙治湖,韦世强. 金纳米团簇在盐酸和十二硫醇刻蚀作用下的原位生长动力学研究[J]. 物理化学学报, 2018, 34(7): 762-769.
[3] 郑有坤,姜晖,王雪梅. 多策略可控合成原子精度合金纳米团簇[J]. 物理化学学报, 2018, 34(7): 740-754.
[4] 郭肖红,周影,石利红,张彦,张彩红,董川,张国梅,双少敏. 基于乙醇和铝离子聚集诱导的铜纳米团簇[J]. 物理化学学报, 2018, 34(7): 818-824.
[5] 孙国栋,康熙,金山,李小武,胡大乔,汪恕欣,朱满洲. 银镍合金团簇Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-二甲基苯硫酚)的合成及其结构表征[J]. 物理化学学报, 2018, 34(7): 799-804.
[6] 杜新华,李阳,殷辉,向全军. Au/TiO2/MoS2等离子体复合光催化剂的制备及其增强光催化产氢活性[J]. 物理化学学报, 2018, 34(4): 414-423.
[7] 张婧,何有军,闵杰. 钙钛矿太阳能电池中小分子空穴传输材料的研究进展[J]. 物理化学学报, 2018, 34(11): 1221-1238.
[8] 杨春和,唐爱伟,滕枫,蒋克健. 钙钛矿CH3NH3PbI3晶体的电化学[J]. 物理化学学报, 2018, 34(11): 1197-1201.
[9] 黄鹏,元利刚,李耀文,周祎,宋波. 左旋多巴和N, N-二甲基亚砜共掺杂PEDOT:PSS作为空穴传输层的高性能p-i-n型钙钛矿太阳能电池[J]. 物理化学学报, 2018, 34(11): 1264-1271.
[10] 许利刚,邱伟,陈润锋,张宏梅,黄维. ZnO电极修饰层在钙钛矿太阳能电池中的应用[J]. 物理化学学报, 2018, 34(1): 36-48.
[11] 黄杨,孙庆德,徐文,何垚,尹万健. 卤化钙钛矿太阳能电池材料理论研究进展[J]. 物理化学学报, 2017, 33(9): 1730-1751.
[12] 杜惟实,吕耀康,蔡志威,张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报, 2017, 33(9): 1828-1837.
[13] 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492-1498.
[14] 顾津宇,齐朋伟,彭扬. 无机非铅钙钛矿太阳能电池研究进展[J]. 物理化学学报, 2017, 33(7): 1379-1389.
[15] 赵峰鸣,闻刚,孔丽瑶,褚有群,马淳安. 氮化钛纳米线的结构特征及其对Ⅴ(Ⅱ)/Ⅴ(Ⅲ)的电极过程[J]. 物理化学学报, 2017, 33(6): 1181-1188.