Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (8): 886-895    DOI: 10.3866/PKU.WHXB201711151
所属专题: 绿色化学
论文     
二氧化硅包覆的杂多酸在双氧水存在条件下催化氧化甘油
袁明明,李迪帆,赵秀阁,马文保,孔康,倪文秀,顾青雯,侯震山*()
Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst
Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU*()
 全文: PDF(1538 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

催化剂的酸性和氧化还原性在催化生物质平台分子转化过程中起着非常重要的作用,杂多酸具有较强的酸性以及优良的氧化还原性,因而杂多酸在生物质催化转化领域备受关注。本文利用溶胶-凝胶法和硅烷化方法将杂多酸催化剂封装在二氧化硅载体内部,随后以傅立叶红外光谱、X-射线衍射仪、热重分析仪、透射电子显微镜、扫描电镜等手段对合成的材料进行了表征。红外光谱表明杂多酸在催化剂中保持了其完整结构,X-射线衍射表明杂多酸高度分散在二氧化硅载体上,电镜表征显示催化剂呈球形纳米颗粒形貌。基于以上表征结果,我们将包覆的杂多酸催化剂应用于甘油氧化,在以过氧化氢为氧化剂,温和反应条件下,合成的材料对甘油氧化具有良好的催化活性,其中对甲酸的选择性大约为70%,对乙醇酸的选择性大约为27%。硅烷化过程对于催化剂循环起着重要的作用,单纯二氧化硅的比表面积为287 m2·g-1,二氧化硅包覆杂多酸经过硅烷化后,其比表面积降为245 m2·g-1,而且孔径也有所降低。单纯二氧化硅与水的接触角为0°,而二氧化硅包覆的杂多酸在硅烷化之后的催化剂具有很强的疏水性,与水的接触角为137°。根据这些催化剂表征数据说明硅烷化过程不仅可以显著提高催化剂的疏水性,而且同时限制了载体孔径,阻止杂多酸流失到反应体系中,与传统的浸渍法将杂多酸负载在二氧化硅载体上得到的催化剂相比,催化剂的循环利用性显著提高。反应后的催化剂结构与新鲜催化剂相比,并没有发生明显变化。催化剂经过一次循环后,表面暴露了更多的活性中心,活性稍有提高。催化剂在反应体系中加入强质子酸可以显著提高反应的催化性能,揭示了Bronsted酸在甘油氧化过程中对甘油分子的活化起着重要的作用。

关键词: 甘油氧化杂多酸封装甲酸过氧化氢    
Abstract:

The Keggin type heteropolyacids (HPAs) have attracted increasing attention due to their strong Bronsted acidity and excellent redox properties, which could play an important role in accelerating the conversion of bio-derived molecules. In this work, heteropolyacid (HPA, H4PMo11VO40) encapsulated by silica was synthesized by a sol-gel method and a sequential silylation technique (HPA@SiO2-N2-S). The as-synthesized material was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The FT-IR spectra show that the HPA anions preserved their Keggin structure when incorporated into the catalyst. The XRD patterns show that HPA molecules are uniformly dispersed within the silica network. The SEM and TEM images confirm that the catalyst was composed of spherical nanometer-sized particles. The porous properties of the catalysts measured by the N2 adsorption-desorption isotherms indicate that the Brunauer, Emmett and Teller (BET) surface area of pure SiO2 was 287 m2·g-1, but upon encapsulation of HPA into the silica matrix, a lower surface area (245 m2·g-1) was measured for the resulting material. In addition, the pore diameter was reduced after silylation. Furthermore, the hydrophobicity of the catalysts was investigated by the measurement of contact angle (CA) with water. The SiO2 and SiO2/HPA catalysts were completely hydrophilic and the contact angle was close to 0°. However, the contact angle of the silylated catalyst was determined to be 137°, indicating that the silylation procedure significantly increased the hydrophobicity of the catalyst. The as-prepared catalysts were also used as heterogeneous catalysts for the selective oxidation of glycerol. The prepared material exhibited excellent catalytic activity towards glycerol oxidation, in which the glycerol can be selectively transformed into formic acid (ca. 70% selectivity) and glycolic acid (ca. 27% selectivity) using H2O2 as an oxidant under mild reaction conditions. The effect of the silylation procedure on the recyclability of catalyst was also investigated in this work. The characterizations described above indicated that silylation procedure can significantly increase the hydrophobicity and limit the pore sizes, resulting in high leach-resistance towards HPA, thus improving the recyclability of the silica-encapsulated HPA catalyst, as compared to the SiO2/HPA catalyst prepared with the conventional impregnation method. Furthermore, the conversion in the second catalytic run is even higher than that of the initial run, which is likely because more active sites are exposed after the first run. The catalyst can be reused for at least five cycles without any leaching of HPA. The spent catalyst did not undergo structural changes, as revealed by FT-IR, XRD, and SEM characterization. Moreover, it was found that the strong Bronsted acid additives played a crucial role in the catalytic oxidation of glycerol.

Key words: Glycerol oxidation    Heteropolyacid    Encapsulation    Formic acid    Hydrogen peroxide
收稿日期: 2017-10-27 出版日期: 2017-11-15
中图分类号:  O643  
基金资助: 国家自然科学基金项目(21373082);国家自然科学基金项目(21773061);上海市教委科研创新项目(15ZZ031)
通讯作者: 侯震山     E-mail: houzhenshan@ecust.edu.cn
`s\vl VE`s\vl V -->
服务  
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章  
袁明明
李迪帆
赵秀阁
马文保
孔康
倪文秀
顾青雯
侯震山

引用本文:

袁明明,李迪帆,赵秀阁,马文保,孔康,倪文秀,顾青雯,侯震山. 二氧化硅包覆的杂多酸在双氧水存在条件下催化氧化甘油[J]. 物理化学学报, 2018, 34(8): 886-895, 10.3866/PKU.WHXB201711151

Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst. Acta Phys. -Chim. Sin., 2018, 34(8): 886-895, 10.3866/PKU.WHXB201711151.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201711151        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I8/886

Scheme 1  The preparation approach of the silica-encapsulated HPA catalyst
Fig 1  FT-IR spectra of (a) HPA; (b) SiO2; (c) HPA/SiO2 catalyst; (d) the fresh HPA@SiO2-S-N2 catalyst; (e) the HPA@SiO2-S-N2 catalyst after reused for 5 times
Fig 2  X-ray diffraction patterns of (a) HPA; (b) SiO2; (c) HPA/SiO2 catalyst; (d) the fresh HPA@SiO2-S-N2 catalyst; (e) the HPA@SiO2-S-N2 catalyst after reused for 5 times
Entry Catalyst Surface area/(m2·g-1) CA/(°) Conversion/%b Selectivity/% b
FA GCA others
1 SiO2 287 0 0
2 HPA/SiO2 175 0 76(5) 66(45) 27(14) 7(41)
3 HPA@SiO2 261 96 61(28) 68(54) 27(22) 5(24)
4 HPA@SiO2-S-N2 245 134 34(51) 70(74) 27(22) 3(4)
5c HPA@SiO2-S-N2 245 134 40 67 33
Table 1  Physicochemical properties and catalytic performances of the oxidation of glycerol using different catalysts a
Fig 3  SEM images of (a, d) SiO2; (b, e) HPA/SiO2; (c, f) HPA@SiO2; (g, i) the fresh HPA@SiO2-S-N2 catalyst; (h, j) HPA@SiO2-S-N2 catalyst after reused for 5 times
Fig 4  TEM images of HPA/SiO2 (a), and elemental mapping images of Si (b), O (c), Mo (d), Si and Mo (e), O and Mo (f)
Fig 5  TEM image of HPA@SiO2-S-N2 (a, g), and elemental mapping images of Si (b), O (c), Mo (d), Si and Mo (e), O and Mo (f)
Fig 6  NH3-TPD profiles of the (a) HPA@SiO2-S-N2 catalyst; (b) HPA@SiO2; (c) HPA/SiO2 catalyst
Fig 7  Dependence of glycerol conversion and selectivity on the reaction condition over HPA@SiO2-S-N2catalyst
Entry Additives Conversion/% Selectivity/%
FA GCA others
1 none 34 70 27 3
2 AlCl3 33 63 28 9
3 ZnCl2 34 66 19 15
4 InCl3 37 69 23 8
5 HC1 46 72 17 11
6 p-CH3(C6H4)SO3H 42 81 18 1
7 H2SO4 45 56 14 30
8 (CF3SO2)2NH 55 63 13 24
9 CF3SO3H 52 81 17 2
Table 2  Different acid additives for the oxidation of glycerol reaction over HPA@SiO2-S-N2 catalysta
Entry Substrates Conversion/% Selectiviy/%
FA GCA IS LA AA GA others
1 Ethylene glycol 31 (59) 15(81) 47(0) 0(0) 0(5) 0(0) 37(14)
2 Glucose 25 (78) 67(51) 0(12) 0(0) 0(3) 0(0) 33 (34)
3 Sorbitol 29 (72) 57 (53) 0(9) 26(2) 0(0) 0(0) 0(14) 17(22)
4 Fructose 60(100) 48 (62) 17(31) 7(0) 0(2) 0(0) 28 (5)
5 1, 2-Propanediol 54 (76) 45 (44) 23(2) 0(0) 0 (45) 0(0) 32(9)
6 Xylitol 48(81) 54 (67) 0(10) 0(0) 25(5) 8(12) 13 (6)
Table 3  Different substrates for the oxidation reaction catalyzed by HPA@SiO2-S-N2 catalyst a
Fig 8  Recyclability of (a) HPA@SiO2-S-N2 catalyst without CF3SO3H as an additive; (b) HPA@SiO2-S-N2 catalyst with CF3SO3H (0.5 mmol) as an additive
Fig 9  Hot filtration experiments for the glycerol oxidation with H2O2 over (a) HPA@SiO2-S-N2 catalyst; (b) HPA/SiO2 catalyst Solid square points (●): without isolating catalyst; Solid triangle points (▲): with isolating catalyst and then reaction in the filtrate
1 Deuss P. J. ; Scott M. ; Tran F. ; Westwood N. J. ; Vries J. G. ; Barta K. J. Am. Chem. Soc. 2015, 137 (23), 7456.
doi: 10.1021/jacs.5b03693
2 Chheda J. N. ; Huber G. W. ; Dumesic J. A. Angew. Chem. Int. Ed. 2007, 46 (38), 7164.
doi: 10.1002/anie.200604274
3 Xu S. ; Zhou P. ; Zhang Z. ; Yang C. ; Zhang B. ; Deng K. ; Bottle S. ; Zhu H. J. Am. Chem. Soc. 2017, 139 (41), 14775.
doi: 10.1021/jacs.7b08861
4 Lange J, P Angew. Chem. Int. Ed. 2015, 54 (45), 13186.
doi: 10.1002/anie.201503595
5 Zhu S. H. ; Wang J. G. ; Fan W. B. Acta Phys. -Chim. Sin. 2016, 32 (1), 85.
doi: 10.3866/PKU.WHXB201511061
朱善辉; 王建国; 樊卫斌. 物理化学学报, 2016, 32 (1), 85.
doi: 10.3866/PKU.WHXB201511061
6 Bozell J. J. ; Petersen G. R. Green Chem. 2010, 12 (4), 539.
doi: 10.1039/b922014c
7 Brandner A. ; Lehnert K. ; Bienholz A. ; Lucas M. ; Claus P. Top. Catal. 2009, 52 (3), 278.
doi: 10.1007/s11244-008-9164-2
8 Gallezot P. Chem. Soc. Rev. 2012, 41 (4), 1538.
doi: 10.1039/c1cs15147a
9 Loges B. ; Boddien A. ; Junge H. ; Beller M. Angew. Chem. Int. Ed. 2008, 47 (21), 3962.
doi: 10.1002/anie.200705972
10 Gilkey M. J. ; Xu B. J. ACS Catal. 2016, 6 (3), 1420.
doi: 10.1021/acscatal.5b02171
11 Boddien A. ; Mellmann D. ; Gaertner F. ; Jackstell R. ; Junge H. ; Dyson P. J. ; Laurenczy G. ; Ludwig R. ; Beller M. Science 2011, 333 (6050), 1733.
doi: 10.1126/science.1206613
12 Yu W. Y. ; Mullen G. M. ; Flaherty D. W. ; Mullins C. B. J. Am. Chem. Soc. 2014, 136 (31), 11070.
doi: 10.1021/ja505192v
13 Barnard J. H. ; Wang C. ; Berry N. G. ; Xiao J. Chem. Sci. 2013, 4 (3), 1234.
doi: 10.1039/c2sc21923a
14 Tsurusaki A. ; Murata K. ; Onishi N. ; Sordakis K. ; Laurenczy G. ; Himeda Y. ACS Catal. 2017, 7 (2), 1123.
doi: 10.1021/acscatal.6b03194
15 Villa A. ; Dimitratos N. ; Chan-Thaw C. E. ; Hammond C. ; Prati L. ; Hutchings G. J. Acc. Chem. Res. 2015, 48 (5), 1403.
doi: 10.1021/ar500426g
16 Dodekatos G. ; Tüysüz H. ChemCatChem. 2017, 9 (4), 610.
doi: 10.1002/cctc.201601219
17 D'Agostino C. ; Brett G. ; Divitini G. ; Ducati C. ; Hutchings G. J. ; Mantle M. D. ; F.Gladden L. F. ACS Catal. 2017, 7 (7), 4235.
doi: 10.1021/acscatal.7b01255
18 Tsuji A. ; Rao K. T. ; Nishimura S. ; Takagaki A. ; Ebitani K. ChemSusChem 2011, 4 (4), 542.
doi: 10.1002/cssc.201000359
19 Rodrigues E. G. ; Pereira M. F. R. ; Chen X. ; Delgado J. J. ; rf o J. J. M. Ind. Eng. Chem. Res. 2013, 52 (49), 17390.
doi: 10.1021/ie402331u
20 Sankar M. ; Dimitratos N. ; Knight D. W. ; Carley A. F. ; Tiruvalam R. ; Kiely C. J. ; Thomas D. ; Hutchings G. J. ChemSusChem. 2009, 2 (12), 1145.
doi: 10.1002/cssc.200900133
21 Davis S. E. ; Ide M. S. ; Davis R. J. Green Chem. 2013, 15 (1), 17.
doi: 10.1039/c2gc36441g
22 Campos-Martin J. M. ; Blanco-Brieva G. ; Fierro J. L. Angew. Chem. Int. Ed. 2006, 45 (42), 6962.
doi: 10.1002/anie.200503779
23 Wang S. S ; Popovic Z. ; Wu H.H ; Liu Y. ChemCatChem. 2011, 3 (7), 1208.
doi: 10.1002/cctc.201000401
24 Sarkar B. ; Pendem C. ; Konathala L. N. S. ; Tiwari R. ; Sasaki T. ; Bal R. Chem. Commun. 2014, 50 (68), 9707.
doi: 10.1039/c4cc03842h
25 Faroppa M. L. ; Musci J. J. ; Chiosso M. E. ; Caggiano C. G. ; Bideberripe H. P. ; Fierro J. L. G. ; Siri G. J. ; Casella M. L. Chin. J. Catal. 2016, 37 (11), 1982.
doi: 10.1016/S1872-2067(16)62531-7
26 Corrado Crotti C. ; Farnetti E. J. Mol. Catal. A-Chem., 2015, 396, 353.
doi: 10.1016/j.molcata.2014.10.021
27 Niu M. ; Hou Y. ; Ren S. ; Wu W. ; Marsh K. N. Green Chem. 2015, 17 (1), 453.
doi: 10.1039/C4GC01440E
28 Huang Y. B. ; Fu Y. Green Chem. 2013, 15 (5), 1095.
doi: 10.1039/C3GC40136G
29 Lan J. H. ; Lin J. C. ; Chen Z. C. ; Yin G. C. ACS Catal. 2015, 5 (4), 2035.
doi: 10.1021/cs501776n
30 Lachkar D. ; Vilona D. ; Dumont E. ; Lelli M. ; Lacote E. Angew. Chem. Int. Ed. 2016, 55 (20), 5961.
doi: 10.1002/anie.201510954
31 Ma Q. ; Tong J. H. ; Su L. D. ; Wang W. H. ; Ma W. M. ; Bo L. L. Acta Phys. -Chim. Sin. 2016, 32 (12), 2961.
doi: 10.3866/PKU.WHXB201609181
马青; 童金辉; 宿玲弟; 王文慧; 马文梅; 薄丽丽. 物理化学学报, 2016, 32 (12), 2961.
doi: 10.3866/PKU.WHXB201609181
32 Okuhara T. Chem. Rev. 2002, 102 (10), 3641.
doi: 10.1021/cr0103569
33 Lu T. ; Niu M. ; Hou Y. ; Wu W. ; Ren S. ; Yang F. Green Chem. 2016, 18 (17), 4725.
doi: 10.1039/c6gc01271j
34 George B. ; Tsigdinos A. ; Hallada C. J. Inorg. Chem. 1968, 7 (3), 437.
doi: 10.1021/ic50061a009
35 Zhao X. S. ; Lu G. Q. ; Whittaker A. K. ; Millar G. J. ; Zhu H. Y. J. Phys. Chem. B. 1997, 101, 6525.
doi: 10.1021/jp971366
36 Sheldon R. A. ; Wallau M. ; Arends I. W. C. E. ; Schuchardt U. Acc. Chem. Res. 1998, 31 (8), 485.
doi: 10.1021/ar9700163
37 Jing L. ; Shi J. ; Zhang F. ; Zhong Y. J. ; Zhu W. D. Ind. Eng. Chem. Res. 2013, 52 (30), 10095.
doi: 10.1021/ie4007112
38 Dippong T. ; Leveib E. A. ; Cadarb O. ; Mesarosc A. ; Borodid G. J. Anal. Appl. Pyrol. 2017, 125, 169.
doi: 10.1016/j.jaap.2017.04.005
39 Capel-Sanchez M. C. ; Barrio L. ; Campos-Martin J. M. ; Fierro J. L. G. J. Colloid Interface Sci. 2004, 277 (1), 146.
doi: 10.1016/j.jcis.2004.04.055
40 Jing F. ; Katryniok B. ; Dumeignil F. ; Bordes-Richard E. ; Paul S. Catal. Sci. Technol. 2014, 4 (9), 2938.
doi: 10.1039/c4cy00518j
41 Feng L. ; Zhang Y, N. ; Xi J. M. ; Zhu Y. ; Wang N. ; Xia F. ; Jiang L. Langmuir 2008, 24 (8), 4114.
doi: 10.1021/la703821h
42 Feng X. Q. ; Gao X. F. ; Wu Z. N. ; Jiang L. ; Zheng Q. S. Langmuir 2007, 23 (9), 4892.
doi: 10.1021/la063039b
43 Viswanadham B. ; Jhansi P. ; Chary K. V. R. ; Friedrich H. B. ; Singh S. Catal. Lett. 2016, 146 (2), 364.
doi: 10.1007/s10562-015-1646-9
44 Zhao K. Y. ; Wang X. H. ; Chen T. ; Wu H. ; Li J. G. ; Yang B. X. ; Li D. Y. ; Wei J. F. Ind. Eng. Chem. Res. 2017, 56 (9), 2549.
doi: 10.1021/acs.iecr.6b03015
[1] 李旭,李强国,蒋建宏,谷惠文,李传华,肖圣雄,李霞. 一种精密恒温环境微量燃烧-溶解-反应多用量热计的设计及应用[J]. 物理化学学报, 2017, 33(6): 1114-1122.
[2] 吕洋,宋玉江,刘会园,李焕巧. 内核含Pd的Pt基核壳结构电催化剂[J]. 物理化学学报, 2017, 33(2): 283-294.
[3] 程昉,王汉奇,许旷,何炜. 基于二硫代氨基甲酸盐自组装的糖芯片制备与表征[J]. 物理化学学报, 2017, 33(2): 426-434.
[4] 陈鑫,胡绍争,李萍,李薇,马宏飞,陆光. 熔盐辅助微波法制备g-C3N4包覆MgO-Al2O3-Fe2O3异质结催化剂及其光催化制过氧化氢性能[J]. 物理化学学报, 2017, 33(12): 2532-2541.
[5] 靳成伟,王叶,宿素玲,张建军. 3, 4-二乙氧基苯甲酸与2, 2'-联吡啶三元稀土配合物的合成、晶体结构及热化学性质[J]. 物理化学学报, 2016, 32(9): 2232-2240.
[6] 罗邦德,熊贤强,许宜铭. CuWO4促进金红石TiO2光催化降解苯酚及其可能机理[J]. 物理化学学报, 2016, 32(7): 1758-1764.
[7] 马红星,葛婷婕,蔡倩倩,徐颖华,马淳安. 水溶液中银阴极对3,4,5,6-四氯吡啶甲酸脱氯反应的催化作用[J]. 物理化学`s\vl VE`s\vl V
[8] 邹晶,范志琳,姜丽莎,周丹红. Ti-MWW分子筛钛氧活性中心与溶剂分子吸附作用的理论研究[J]. 物理化学学报, 2016, 32(4): 935-942.
[9] 马青,童金辉,宿玲弟,王文慧,马文梅,薄丽丽. 杂多酸/离子液体杂化材料催化苯的高选择性羟基化[J]. 物理化学学报, 2016, 32(12): 2961-2967.
[10] 罗柳轩,沈水云,朱凤鹃,章俊良. 单原子层Pd壳的Pt3Ni纳米立方体的甲酸氧化性能[J]. 物理化学学报, 2016, 32(1): 337-342.
[11] 朱庆宫,孙晓甫,康欣晨,马珺,钱庆利,韩布兴. 泡沫铜负载硫化亚铜电极高效电催化还原二氧化碳制备甲酸[J]. 物理化学学报, 2016, 32(1): 261-266.
[12] 马浩, 龙金星, 王芙蓉, 王乐夫, 李雪辉. 酸性离子液体催化纤维素在生物丁醇中转化为乙酰丙酸丁酯[J]. 物理化学学报, 2015, 31(5): 973-979.
[13] 郝学良,赵金鸽,高建荣,韩亮. 基于苯甲酸受体的咔唑染料敏化剂的合成和光电性能[J]. 物理化学学报, 2015, 31(10): 1977-1984.
[14] 黄宗令, 王丽平, 牟成旭, 李晶泽. 对苯二甲酸镁作为钠离子电池的有机负极材料[J]. 物理化学学报, 2014, 30(10): 1787-1793.
[15] 周阳, 胡仙超, 李立清, 陈喜蓉. 中空介孔三氧化钨微球载钯催化剂的甲酸氧化电催化性能[J]. 物理化学学报, 2014, 30(1): 83-87.