Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (6): 581-597    DOI: 10.3866/PKU.WHXB201711222
综述     
水系钠离子电池电极材料研究进展
刘双,邵涟漪,张雪静,陶占良*(),陈军
Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries
Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO*(),Jun CHEN
 全文: PDF(3470 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

随着太阳能、风能等可再生能源发电并网普及应用和智能电网建设,储能技术成为能源优化利用的核心技术之一。水系钠离子电池具有资源丰富、价格低廉等优势,作为未来电网储能的重要选择而成为近年来电化学储能技术前沿的研究热点。由于受到水的热力学电化学窗口限制及嵌钠反应的特殊性(例如溶液的pH值、氧的溶解等),以及容量、电化学电位、适应性及催化效应等,电极材料选择面临挑战,进而影响水系钠离子电池的应用。因此,电极材料成为水系钠离子电池的研究重点。本文简要概括了水系钠离子电池的特点,并对氧化物、聚阴离子化合物、普鲁士蓝类似物和有机物等电极材料体系的最新研究进展进行了总结,并概括了将来的发展方向,为推动水系钠离子电池的发展和能源优化研究奠定了基础。

关键词: 水系钠离子电池正极材料负极材料电解液    
Abstract:

With solar, wind, and other types of renewable energy incorporated into electrical grids and with the construction of smart grids, energy storage technology has become essential to optimize energy utilization. Due primarily to its abundance and low cost, aqueous rechargeable sodium-ion batteries (ARSBs) have received increasing attention in the field of electrochemical energy storage technology, and represent a promising alternative to energy storage in future power grids. However, because of the limitations of the thermodynamics of electrochemical processes in water, reactions in aqueous solution are more complicated compared to an organic system. Many parameters must be taken into account in an aqueous system, such as electrolyte concentration, dissolved oxygen content, and pH. As a result, it is challenging to select an appropriate electrode material, whose capacity, electrochemical potential, adaptability, and even catalytic effect may seriously affect the battery performance and hamper its application. Therefore, the development of advanced electrode materials, which can suppress side reactions of the battery and have good electrochemical performance, has become the focus of ARSB research. This paper briefly discusses the characteristics of ARSBs and summarizes the latest research progress in the development of electrode materials, including oxides, polyanionic compounds, Prussian blue analogues, and organics. This review also discusses the challenges remaining in the development of ARSBs, and suggests several ways to solve them, such as by using multivalent ions, hybridized electrolytes, etc., and speculates about future research directions. The studies and concepts discussed herein will advance the development of ARSBs and promote the optimization of energy utilization.

Key words: Aqueous sodium ion battery    Cathode material    Anode material    Electrolyte
收稿日期: 2017-10-27 出版日期: 2017-11-22
基金资助: 国家重点研发计划(2016YFB0901500);国家重点研发计划(2016YFB0101201);国家自然科学基金(51771094)
通讯作者: 陶占良     E-mail: taozhl@nankai.edu.cn
作者简介: 陶占良,1972年生。2005年博士毕业于南开大学化学学院。现为南开大学化学学院教授、硕士研究生导师。主要从事高能电池电极材料、能源电化学等电化学领域相关的科研工作
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘双
邵涟漪
张雪静
陶占良
陈军

引用本文:

刘双,邵涟漪,张雪静,陶占良,陈军. 水系钠离子电池电极材料研究进展[J]. 物理化学学报, 2018, 34(6): 581-597, 10.3866/PKU.WHXB201711222

Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597, 10.3866/PKU.WHXB201711222.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201711222        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I6/581

图1  水溶液钠离子电池的反应原理示意图
Na Li
Atomic weight/(g·mol-1) 23 6.94
Eo/V (vs SHE) -2.71 -3.04
Melting point/℃ 97.7 180.5
Abundance/% 2.36 0.002
Distribution Everywhere 70% in South America
Price of carbonates/
(RMB per·kg-1)
~2 ~40
表1  金属钠与锂物理化学性质、分布及成本对比9
图2  水系钠离子电池电极材料在水溶液中电位(vs SHE, vs Na+/Na)13
图3  (a) λ-MnO2,(b) δ-MnO2,(c) γ-MnO2,(d) P2相-NaxMnO2,(e) P3相-NaxMnO2锰氧化物的结构示意图31
图4  聚阴离子正极材料晶体结构
图5  (a) FeFe(CN)6纳米晶体SEM图片,(b) CV曲线,(c) 250 mA∙g-1下充放电曲线以及10C (1C = 125 mA∙g-1)下的循环寿命曲线,(d)倍率性能78
图6  不同NaTi2(PO4)3 SEM或TEM图像
图7  全电池的充放电曲线、CV曲线和实物图
Type Cathode Anode Electrolyte (pH) AV. Voltage/V Capacity/
(mAh·g-1)
Retention/%
(No. of cycles)
Ref.
Cathode-based
Mn-based oxides Na0.95MnO2a Zn 0.5 mol·L-1 Zn(CH3COO)2
0.5 mol·L-1 CH3COONa (9.5)
1.4 40 (4C) 92 (1000) 119
K0.27MnO2a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 0.8 66.5 (200 mA·g-1) ~100 (100) 41
Na0.66[Mn0.66Ti0.34]O2a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.2 76 (2C) 89 (300) 43
A-δ-MnO2 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 0.8 66.4b (200 mA·g-1) 90 (200) 111
Na0.44MnO2 NaTi2(PO4)3a 1 mol·L-1 Na2SO4 (7) 1.1 120 (0.6C) 60 (700) 112
γ-MnO2a Zn 7 mol·L-1 NaOH + 1 mol·L-1
ZnSO4 (14.7)
1.35 225 (0.25 mA·cm-2) 76 (25) 116
NaMnO2 NaTi2(PO4)3 2 mol·L-1 CH3COONa (9.5) 1.15 37b (5C) 75 (500) 117
NaMnO2 AC 0.5 mol·L-1 Na2SO4(7) 1.9 38.9 F·g-1 b(10C) 97 (10000) 118
Na0.58MnO2•0.48H2O NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.4 39 b (10C) 94 (1000) 39
Polyanionic compounds NaFePO4a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (12) 0.6 70 (1C) 76 (20) 51
Na3V2O2x(PO4)2F3-2xa NaTi2(PO4)3 10 mol·L-1 NaClO4 + 2% (φ) VC 1.45 39 b (10C) 75 (400) 62
Na3V2(PO4)3 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.2 58 b (10 A·g-1) 50 (50) 113
Na2VTi(PO4)3 a Na2VTi(PO4)3 1 mol·L-1 Na2SO4 (7) 1.2 50.4 (1C) 70 (1000) 120
Na3MnTi(PO4)3 Na3MnTi(PO4)3 1 mol·L-1 Na2SO4(7) 1.4 56.5 b (1C) 98(100) 121
Prussian blue analogues Na2NiFe(CN)6 NaTi2(PO4)3a 1 mol·L-1 Na2SO4 (7) 1.27 76 (5C) 88 (250) 75
Na2CuFe(CN)6 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.4 85 b (10C) 88 (1000) 76
CuHCF MnHCF 10 mol·L-1 NaClO4 with Mn(ClO4)2 (6.4) 0.95 23 b (10C) 99.8 (1000) 108
Anode-based
Activated carbon
(AC)
Na4Mn9O18 a AC a 1 mol·L-1 Na2SO4 (7) - 61.1 F·g-1
(500 mA·g-1)
84 (4000) 35
Na0.35MnO2 a AC 0.5 mol·L-1 Na2SO4 (7) 0.5 157 F·g-1 (200 mA·g-1) > 90 (5000) 37
Maricite
NaMn1/3Co1/3Ni1/3PO4 a
AC 2 mol·L-1 NaOH (14.3) 1.3 45 F·g-1
(0.5 A·g-1)
> 95 (1000) 58
Na0.44MnO2 a AC 1 mol·L-1 Na2SO4 (7-8) 1.7 45 (C/8) ~100 (1000) 87
λ-MnO2 a AC 1 mol·L-1 Na2SO4 (7) 1.2 -(3C) 100 (5000) 114
NaTi2(PO4)3 Na0.44MnO2 NaTi2(PO4)3 a 1 mol·L-1 Na2SO4 (7) 1.13 68 (15.7 mA·g-1) 97.5 (20) 99
Na0.44MnO2 NaTi2(PO4)3 a 1 mol·L-1 Na2SO4 (7) 1.0 130 (0.1C) 86 (100) 100
Na0.44MnO2 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.1 50 b (2C) 39 (300) 101
Na0.44MnO2 NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 1.1 31 b (0.5C) 84 (500) 103
K0.27MnO2a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 0.7 83 (200 mA·g-1) 83 (100) 42
FePO4 NaTi2(PO4)3 a 1 mol·L-1 Na2SO4 + NaOH (11) 0.7 100 (0.2 mA) 60 (20) 56
Na3V2O2x(PO4)2F3-2x a NaTi2(PO4)3 10 mol·L-1 NaClO4 + 2% (φ) VC (1.7) 1.5 35 (10C) 90 (200) 63
Na2CoFe(CN)6 a NaTi2(PO4)3 1 mol·L-1 Na2SO4 (7) 107 100 (5C) 98 (100) 77
Oxides NaFe0.95V0.05PO4 Na1.2V3O8 a 10.73 mol·L-1 NaNO3 (7) 0.5 100 (100 mA·g-1) 90 (1000) 60
Na0.44MnO2 Na2V6O16•nH2O a 1 mol·L-1 Na2SO4 (7) 0.9 30 (40 mA·g-1) 77 (30) 91
Na0.35MnO2 PPy@MoO3 a 0.5 mol·L-1 Na2SO4 (7) 0.8 25 (550 mA·g-1) 79 (1000) 115
Organics NaVPO4F Polymide 5 mol·L-1 NaNO3 (7) 1.0 165 b (50 mA·g-1) 68 (20) 61
KCo0.5Cu0.5Fe(CN)6 a SNDI 1 mol·L-1 Na2SO4 (7) 1.1 34 (10C) 88 (100) 74
Na3V2(PO4)3 a PPTO 5 mol·L-1 NaNO3 (7) 1.0 201 (1C) 79 (80) 110
表2  一些典型的ARSB全电池的电化学性能
1 Yang Z. ; Zhang J. ; Kintner-Meyer M. C. W. ; Lu X. ; Choi D. ; Lemmon J. P. ; Liu J. Chem. Rev. 2011, 111, 3577.
doi: 10.1021/cr100290v
2 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741
3 Wen Y. ; He K. ; Zhu Y. J. ; Han F. D. ; Xu Y. H. ; Matsuda I. ; Ishii Y. ; Cumings J. ; Wang C.S. Nat. Commun. 2014, 5, 4033.
doi: 10.1038/ncomms5033
4 Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater. 2013, 23, 947.
doi: 10.1002/adfm.201200691
5 Kundu D. ; Talaie E. ; Duffort V. ; Nazar L. F. Angew. Chem. Int. Ed. 2015, 54, 3431.
doi: 10.1002/anie.201410376
6 Fang Y. J. ; Chen Z. X. ; Ai X. P. ; Yang H. X. ; Cao Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211.
doi: 10.3866/PKU.WHXB201610111
方永进; 陈重学; 艾新平; 杨汉西; 曹余良. 物理化学学报, 2017, 33, 211.
doi: 10.3866/PKU.WHXB201610111
7 Dong X. L. ; Chen L. ; Liu J. Y. ; Haller S. ; Wang Y. G. ; Xia Y. Y. Sci. Adv. 2016, 2, e1501038.
doi: 10.1126/sciadv.1501038
8 Yang H. X. ; Qian J. F. J. Inorg. Mater. 2013, 28, 1165.
doi: 10.3724/SP.J.1077.2013.13388
杨汉西; 钱江锋. 无机材料学报, 2013, 28, 1165.
doi: 10.3724/SP.J.1077.2013.13388
9 Zhang N. ; Liu Y. C. ; Chen C. C. ; Tao Z. L. ; Chen J. Chin. J. Inorg. Chem. 2015, 31, 1739.
doi: 10.11862/cjic.2015.258
张宁; 刘永畅; 陈程成; 陶占良; 陈军. 无机化学学报, 2015, 31, 1739.
doi: 10.11862/cjic.2015.258
10 Tang W. ; Zhu Y. ; Hou Y. ; Liu L. ; Wu Y. ; Loh K. P. ; Zhang H. ; Zhu K. Energy Enviorn. Sci. 2013, 6, 2093.
doi: 10.1039/C3EE24249H
11 Li W. ; Dahn J. R. ; Wainwright D. S. Science 1994, 264, 1115.
doi: 10.1126/science.264.5162.1115
12 Cao Y. ; Wang Y. G. ; Wang Q. ; Zhang Z. Y. ; Chen Y. ; Xia Y. Y. ; Dai X. Energy Storage Sci. Technol. 2016, 5, 317.
doi: 10.3969/j.issn.2095-4239.2016.03.008
蓸翊; 王永刚; 张青; 张兆勇; 车勇; 夏永姚; 戴翔. 储能科学与技术, 2016, 5, 317.
doi: 10.3969/j.issn.2095-4239.2016.03.008
13 Kim H. ; Hong J. ; Park K. Y. ; Kim H. ; Kim S. W. ; Kang K. Chem. Rev. 2014, 114, 11788.
doi: 10.1021/cr500232y
14 Lu Y. ; Goodenough J. B. ; Kim Y. J. Am. Chem. Soc. 2011, 133, 5756.
doi: 10.1021/ja201118f
15 Luo J. Y. ; Cui W. J. ; He P. ; Xia Y. Y. Nat. Chem. 2010, 2, 760.
doi: 10.1038/nchem.763
16 Ghodbane O. ; Pascal J. L. ; Favie F. ACS Appl. Mater. Interfaces 2009, 1, 1130.
doi: 10.1021/am900094e
17 Hill L. I. ; Verbaere A. ; Guyomard D. J. Power Sources 2003, 119-121, 226.
doi: 10.1016/S0378-7753(03)00238-6
18 Cao J. ; Mao Q. H. ; Shi L. ; Qian Y. T. J. Mater. Chem. 2011, 21, 16210.
doi: 10.1039/C1JM10862J
19 Kitchaev D. A. ; Dacek S. T. ; Sun W. H. ; Ceder G. J. Am. Chem. Soc. 2017, 139, 2672.
doi: 10.1021/jacs.6b11301
20 Tarascon J. M. ; Guyomard D. G. ; Wilkens B. ; Mc Kinnon W. R. ; Barboux P. Solid State Ionics 1992, 57, 113.
doi: 10.1016/0167-2738(92)90072-W
21 Kanoh H. ; Tang W. ; Makita Y. ; Ooi K. Langmuir 1997, 13, 6845.
doi: 10.1021/la970767d
22 Athouel L. ; Moser F. ; Dugas R. ; Crosnier O. ; Belanger D. ; Brousse T. J. Phys. Chem. C 2008, 112, 7270.
doi: 10.1021/jp0773029
23 Athouel L. ; Moser F. ; Dugas R. ; Crosnier O. ; Belanger D. ; Brousse T. ECS Trans. 2008, 16, 119.
doi: 10.1149/1.2985634
24 Shao J. ; Li X. Y. ; Qu Q. T. ; Wu Y. P. J. Power Sources 2013, 223, 56.
doi: 10.1016/j.jpowsour.2012.09.046
25 Komaba S. ; Ogata A. ; Tsuchikawa T. Electrochem. Commun. 2008, 10, 1435.
doi: 10.1016/j.elecom.2008.07.025
26 Minakshi M. Mater. Sci. Eng. B 2012, 177, 1788.
doi: 10.1016/j.mseb.2012.09.003
27 Qu Q. T. ; Liu L. L. ; Wu Y. P. ; Holze R. Electrochim. Acta 2013, 96, 8.
doi: 10.1016/j.electacta.2013.02.078
28 Sun X. Structures and Electrochemical Performances of Transition Metal Oxides NaMO2 as Electrode Materials for Sodium-Ion Batteries. Ph. D. Dissertation University of Science and Technology of China, Anhui 2016.
孙信. 过渡金属氧化物NaxMO2结构调控和储钠性能的研究 合肥:中国科学技术大学, 2016.
29 Su D. W. ; Wang C. Y. ; Ahn H. J. ; Wang G. X. Chem. Eur. J. 2013, 19, 10884.
doi: 10.1002/chem.201301563
30 Liu Y. C. ; Chen C. C. ; Zhang N. ; Wang L. B. ; Xiang X. D. ; Chen J. J. Electrochem. 2016, 22, 437.
doi: 10.13208/j.electrochem.160548
刘永畅; 陈程成; 张宁; 王刘彬; 向兴德; 陈军. 电化学, 2016, 22, 437.
doi: 10.13208/j.electrochem.160548
31 Sauvage F. ; Baudrin E. ; Tarascon J. M. Sens. Actuators, B 2007, 120, 638.
doi: 10.1016/j.snb.2006.03.024
32 Parant J. P. ; Olazcuaga R. ; Devalette M. ; Fouassier C. ; Hagenmuller P. J. Solid State Chem. 1971, 3, 1.
doi: 10.1016/0022-4596(71)90001-6
33 Kim H. ; Kim D. J. ; Seo D. H. ; Yeom M. S. ; Kang K. ; Kim D. K. ; Jung Y. Chem. Mater. 2012, 24, 1205.
doi: 10.1021/cm300065y
34 Kim D. J. ; Ponraj R. ; Kannan A. G. ; Lee H. W. ; Fathi R. ; Ruffo R. ; Mari C. M. ; Kim D. K. J. Power Sources 2013, 244, 758.
doi: 10.1016/j.jpowsour.2013.02.090
35 Liu X. ; Zhang N. ; Ni J. ; Gao L. J. Solid State Electrochem. 2013, 17, 1939.
doi: 10.1007/s10008-013-2044-0
36 Dai K. ; Mao J. ; Song X. ; Battaglia V. ; Liu G. J. Power Sources 2015, 285, 161.
doi: 10.1016/j.jpowsour.2015.03.087
37 Zhang B. H. ; Liu Y. ; Chang Z. ; Yang Y. Q. ; Wen Z. B. ; Wu Y. P. ; Holze R. J. Power Sources 2014, 253, 98.
doi: 10.1016/j.jpowsour.2013.12.011
38 Tevar A. D. ; Whitacre J. F. J. Electrochem. Soc. 2010, 157, A870.
doi: 10.1149/1.3428667
39 Zhang X. Q. ; Hou A. G. ; Li A. N. ; Liang A. W. ; Zhu Y. C. ; Qian Y. T. J. Mater. Chem. A 2016, 4, 856.
doi: 10.1039/C5TA08857G
40 Yu F. ; Zhang S. M. ; Fang C. ; Liu Y. ; He S. Y. ; Xia J. ; Yang J. H. ; Zhang N. Ceram. Int. 2017, 43, 9960.
doi: 10.1016/j.ceramint.2017.05.007
41 Liu Y. ; Qiao Y. ; Zhang W. ; Xu H. ; Li Z. ; Shen Y. ; Yuan L. ; Hu X. ; Dai X. ; Huang Y. H. Nano Energy 2014, 5, 97.
doi: 10.1016/j.nanoen.2014.02.010
42 Liu Y. ; Qiao Y. ; Lou X. F. ; Zhang X. H. ; Huang Y. H. ACS Appl. Mater. Inter. 2016, 8, 14564.
doi: 10.1021/acsami.6b03089
43 Wang Y. S. ; Mu L. Q. ; Liu J. ; Yang Z. Z. ; Yu X. Q. ; Gu L. ; Hu Y. S. ; Li H. ; Yang X. Q. ; Chen L. Q. et al. Adv. Energy Mater. 2015, 5, 1501005.
doi: 10.1002/aenm.201501005
44 Jung Y. H. ; Hong S. T. ; Kim D. K. J. Electrochem. Soc. 2013, 160, A897.
doi: 10.1149/2.113306jes
45 Andersson A. S. ; Kalska B. ; Haggstrom L. ; Thomas J. O. Solid State Ionics 2000, 130, 41.
doi: 10.1016/S0167-2738(00)00311-8
46 Padhi A. K. ; Nanjundaswamy K. S. ; Masquelier C. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144, 2581.
doi: 10.1149/1.1837868
47 Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
doi: 10.1038/35104644
48 Song W. X. ; Hou H. S. ; Ji X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.
doi: 10.3866/PKU.WHXB201608303
宋维鑫; 侯红帅; 纪效波. 物理化学学报, 2017, 33, 103.
doi: 10.3866/PKU.WHXB201608303
49 Song W. W. ; Ji X. B. ; Zhu Y. ; Zhu H. J. ; Li F. Q. ; Chen J. ; Lu F. ; Yao Y. P. ; Banks C. E. ChemElectroChem 2014, 1, 871.
doi: 10.1002/celc.201300248
50 Mason C. M. ; Lange F. ECS Electrochem. Lett. 2015, 4, A79.
doi: 10.1149/2.0011508eel
51 Fernandez-Ropero A. J. ; Saurel D. ; Acebedo B. ; Rojo T. ; Casas-Cabanas M. J. Power Sources 2015, 291, 40.
doi: 10.1016/j.jpowsour.2015.05.006
52 Vujkovic M. ; Mentus S. J. Power Sources 2014, 247, 184.
doi: 10.1016/j.jpowsour.2013.08.062
53 Levi M. D. ; Sigalov S. ; Salitra G. ; Elazari R. ; Aurbach D. ; Daikhin L. ; Presser V. J. Phys. Chem. C 2013, 117, 1247.
doi: 10.1021/jp3117819
54 Zhao Z. W. ; Si X. F. ; Liang X. X. ; Liu X. H. ; He L. H. Trans. Nonferrous Met. Soc. China 2013, 23, 1157.
doi: 10.1016/S1003-6326(13)62578-9
55 Moreau P. ; Guyomard D. ; Gaubicher J. ; Boucher F. Chem. Mater. 2010, 22, 4126.
doi: 10.1021/cm101377h
56 Li Z. ; Ravnsbaek D. B. ; Xiang K. B. ; Chiang Y. M. Electrochem. Commun. 2014, 44, 12.
doi: 10.1016/j.elecom.2014.04.003
57 Minakshi M. ; Meyrick D. J. Alloys Compd. 2013, 555, 10.
doi: 10.1016/j.jallcom.2012.11.203
58 Minakshi M. ; Meyrick D. ; Appadoo D. Energ. Fuel. 2013, 27, 3516.
doi: 10.1021/ef400333s
59 Deng C. ; Zhang S. ; Wu Y. X. Nanoscale 2015, 7, 487.
doi: 10.1039/C4NR05175K
60 Vujkovic M. ; Mentus S. J. Power Sources 2016, 325, 185.
doi: 10.1016/j.jpowsour.2016.06.031
61 Qin H. ; Song Z. P. ; Zhan H. ; Zhou Y. H. J. Power Sources 2014, 249, 367.
doi: 10.1016/j.jpowsour.2013.10.091
62 Kumar P. R. ; Jung Y. H. ; Lim C. H. ; Kim D. K. J. Mater. Chem. A 2015, 3, 6271.
doi: 10.1039/C5TA00980D
63 Kumar P. R. ; Jung Y. H. ; Moorthy B. ; Kim D. K. J. Electrochem. Soc. 2016, 163, A1484.
doi: 10.1149/2.0031608jes
64 Jung Y. H. ; Lim C. H. ; Kim J. H. ; Kim D. K. RSC Adv. 2014, 4, 9799.
doi: 10.1039/C3RA47560C
65 Bocarsly A. B. ; Sinha S. J. Electroanal. Chem. 1982, 137, 157.
doi: 10.1016/0022-0728(82)85075-4
66 Bocarsly A. B. ; Sinha S. J. Electroanal. Chem. 1982, 140, 167.
doi: 10.1016/0368-1874(82)85310-0
67 Itaya K. ; Uchida I. ; Neff V. D. Acc. Chem. Res. 1986, 19, 162.
doi: 10.1021/ar00126a001
68 Kalwellis-Mohn S. ; Grabner E. W. Electrochim. Acta 1989, 34, 1265.
doi: 10.1016/0013-4686(89)87169-5
69 `s\vl VE`s\vl Vf_source'> Wessells C. D. ; Peddada S. V. ; Huggins R. A. ; Cui Y. Nano Lett. 2011, 11, 5421.
doi: 10.1021/nl203193q
70 Wessells C. D. ; Peddada S. V. ; McDowell M. T. ; Huggins R. A. ; Cui Y. J. Electrochem. Soc. 2012, 159, A98.
doi: 10.1149/2.060202jes
71 Wessells C. D. ; Huggins R. A. ; Cui Y. Nat. Commun. 2011, 2, 550.
doi: 10.1038/ncomms1563
72 Pasta M. ; Wessells C. D. ; Huggins R. A. ; Cui Y. Nat. Commun. 2012, 3, 1149.
doi: 10.1038/ncomms2139
73 Wessells C. D. ; McDowell M. T. ; Peddada S. V. ; Pasta M. ; Huggins R. A. ; Cui Y. ACS Nano 2012, 6, 1688.
doi: 10.1021/nn204666v
74 Kim D. J. ; Jung Y. H. ; Bharathi K. K. ; Je S. H. ; Kim D. K. ; Coskun A. ; Choi J. K. Energy Mater. 2014, 4, 1400133.
doi: 10.1002/aenm.201400133
75 Wu X. Y. ; Cao Y. L. ; Ai X. P. ; Qian J. F. ; Yang H. X. Electrochem. Commun. 2013, 31, 145.
doi: 10.1016/j.elecom.2013.03.013
76 Wu X. Y. ; Sun M. Y. ; Shen Y. F. ; Qian J. F. ; Cao Y. L. ; Ai X. P. ; Yang H. X. ChemSusChem 2014, 7, 407.
doi: 10.1002/cssc.201301036
77 Wu X. Y. ; Sun M. Y. ; Guo S. M. ; Qian J. F. ; Liu Y. ; Cao Y. L. ; Ai X. P. ; Yang H. X. ChemNanoMat 2015, 1, 188.
doi: 10.1002/cnma.201500021
78 Wu X. Y. ; Luo Y. ; Sun M. Y. ; Qian J. F. ; Cao Y. L. ; Ai X. P. ; Yang H. X. Nano Energy 2015, 13, 117.
doi: 10.1016/j.nanoen.2015.02.006`s\vl VE`s\vl V
79 Chen L. ; Shao H. Z. ; Zhou X. F. ; Liu G. Q. ; Jiang J. ; Liu Z. P. Nat. Commun. 2016, 7, 11982.
doi: 10.1038/ncomms11982
80 Li W. F. ; Zhang F. ; Xiang X. D. ; Zhang X. C. ChemElectroChem 2017, 4, 2870.
doi: 10.1002/celc.201700776
81 Paulitsch B. ; Yun J. ; Bandarenka A. S. ACS Appl. Mater. Interfaces 2017, 9, 8107.
doi: 10.1021/acsami.6b15666
82 Lee J. H. ; Ali G. ; Kim D. H. ; Chung K. Y. Adv. Energy Mater. 2017, 7, 1601491.
doi: 10.1002/aenm.201601491
83 Zhu Z. Q. ; Li H. ; Liang J. ; Tao Z. L. ; Chen J. Chem. Commun. 2015, 51, 1446.
doi: 10.1039/C4CC08220F
84 Guo C. Y. ; Zhang K. ; Zhao Q. ; Pei L. K. ; Chen J. Chem. Commun. 2015, 51, 10244.
doi: 10.1039/C5CC02251G
85 Wang S. W. ; Wang L. J. ; Zhang K. ; Zhu Z. Q. ; Tao Z. L. ; Chen J. Nano Lett. 2013, 13, 4404.
doi: 10.1021/nl402239p
86 Koshika K. ; Sano N. ; Oyaizu K. ; Nishide H. Chem. Commun. 2009, 7, 836.
doi: 10.1039/b818087c
87 Whitacre J. F. ; Tevar A. ; Sharma S. Electrochem. Commun. 2010, 12, 463.
doi: 10.1016/j.elecom.2010.01.020
88 Mai L. Q. ; Hu B. ; Chen W. ; Qi Y. Y. ; Lao C. S. ; Yang R. S. ; Dai Y. ; Wang Z. L. Adv. Mater. 2007, 19, 3712.
doi: 10.1002/adma.200700883
89 Xia X. F. ; Hao Q. L. ; Lei W. ; Wang W. J. ; Wang H. L. ; Wang X. J. Mater. Chem. 2012, 22, 8314.
doi: 10.1039/C2JM16216D
90 Zhou L. ; Yang L. C. ; Yuan P. ; Zou J. ; Wu Y. P. ; Yu C. Z. J. Phys. Chem. C 2010, 114, 21868.
doi: 10.1021/jp108778v
91 Deng C. ; Zhang S. ; Dong Z. ; Shang Y. Nano Energy 2014, 4, 49.
doi: 10.1016/j.nanoen.2013.12.014
92 Vujkovic M. ; Paunkovic B. S. ; Simatovic I. S. ; Mitric M. ; Sequeira C. A. C. Mentus. S. Electrochim. Acta 2014, 147, 167.
doi: 10.1016/j.electacta.2014.08.137
93 Wang Y. S. ; Liu J. ; Lee B. ; Qiao R. ; Yang Z. Z. ; Xu S. Y. ; Yu X. Q. ; Gu L. ; Hu Y. S. ; Yang W. L. ; et al Nat. Commun. 2015, 6, 6401.
doi: 10.1038/ncomms7401
94 Pang G. ; Yuan C. A. ; Nie P. ; Ding B. ; Zhu J. J. ; Zhang X. G. Nanoscale 2014, 6, 6328.
doi: 10.1039/C3NR06730K
95 Delmas C. ; Cherkaoui F. ; Nadiri A. ; Hagenmuller P. Mater. Res. Bull. 1987, 22, 631.
doi: 10.1016/0025-5408(87)90112-7
96 Park S. ; II ; Gocheva I. ; Okada S. ; Yamaki J. I. J. Electrochem. Soc. 2011, 158, A1067.
doi: 10.1149/1.3611434
97 Arun N. ; Aravindan V. ; Ling W. C. ; Madhavi S. J. Alloys Compd. 2014, 603, 48.
doi: 10.1016/j.jallcom.2014.03.059
98 Mohamed A. I. ; Whitacre J. F. Electrochim. Acta 2017, 235, 730.
doi: 10.1016/j.electacta.2017.03.106
99 Wu W. ; Mohamed A. ; Whitacre J. F. J. Electrochem. Soc. 2013, 160, A497.
doi: 10.1149/2.054303jes
100 Wu W. ; Yan J. ; Wise A. ; Rutt A. ; Whitacre J. F. J. Electrochem. Soc. 2014, 161, A561.
doi: 10.1149/2.059404jes
101 Pang G. ; Nie P. ; Yuan C. Z. ; Shen L. F. ; Zhang X. G. ; Zhu J. J. ; Ding B. Energy Technol. 2014, 2, 705.
doi: 10.1002/ente.201402045
102 Li X. N. ; Zhu X. B. ; Liang J. W. ; Hou Z. G. ; Wang Y. ; Lin N. ; Zhu Y. C. ; Qian Y. T. J. Electrochem. Soc. 2014, 161, A1181.
doi: 10.1149/2.0081409jes
103 Zhao B. D. ; Lin B. ; Zhang S. ; Deng C. Nanoscale 2015, 7, 18552.
doi: 10.1039/C5NR06505d
104 Hung T. F. ; Lan W. H. ; Yeh Y. W. ; Chang W. S. ; Yang C. C. ; Lin J. C. ACS Sustain. Chem. Eng. 2016, 4, 7074.
doi: 10.1021/acssuschemeng.6b01962
105 He Y. W. ; Yuan H. ; Wu Y. X. ; Chen C. ; Yang S. ; Ai C. C. Electrochemistry 2016, 84, 705.
doi: 10.5796/electrochemistry.84.705
106 Ke L. L. ; Dong J. ; Lin B. ; Yu T. T. ; Wang H. F. ; Zhang S. ; Deng C. Nanoscale 2017, 9, 4183.
doi: 10.1039/C7NR00793K
107 Minakshi M. ; Ralph D. ECS Trans. 2013, 45, 95.
doi: 10.1149/04529.0095ecst
108 Pasta M. ; Wessells C. D. ; Liu N. ; Nelson J. ; McDowell M. T. ; Huggins R. A. ; Toney M. F. ; Cui Y. Nat. Commun. 2014, 5, 3007.
doi: 10.1038/ncomms4007
109 Choi W. ; Harada D. ; Oyaizu K. ; Nishide H. J. Am. Chem. Soc. 2011, 133, 19839.
doi: 10.1021/ja206961t
110 Liang Y. L. ; Jing Y. ; Gheytani S. ; Lee K. Y. ; Liu P. ; Facchetti A. ; Yao Y. Nat. Mater. 2017, 16, 841.
doi: 10.1038/nmat4919
111 Liu Y. ; Qiao Y. ; Zhang W. X. ; Wang H. ; Chen H. K. ; Zhu H. P. ; Li Z. ; Huang Y. H. J. Mater. Chem. A 2015, 3, 7780.
doi: 10.1039/C5TA00396B
112 Li Z. ; Young D. ; Xiang K. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2013, 3, 290.
doi: 10.1002/aenm.201200598
113 Zhang Q. ; Liao C. Y. ; Zhai T. Y. ; Li H. Q. Electrochim. Acta 2016, 196, 470.
doi: 10.1016/j.electacta.2016.03.007
114 Whitacre J. F. ; Wiley T. ; Shanbhag S. ; Wenzhuo Y. ; Mohamed A. ; Chun S. E. ; Weber E. ; Blackwood D. ; Lynch-Bell E. ; Gulakowski J. ; et al J. Power Sources 2012, 213, 255.
doi: 10.1016/j.jpowsour.2012.04.018
115 Liu Y. ; Zhang B. H. ; Xiao S. Y. ; Liu L. L. ; Wen Z. B. ; Wu Y. P. Electrochim. Acta 2014, 116, 512.
doi: 10.1016/j.electacta.2013.11.077
116 Minakshi M. ; Meyrick D. Electrochim. Acta 2013, 101, 66.
doi: 10.1016/j.electacta.2013.02.075
117 Hou Z. G. ; Li X. N. ; Liang J. W. ; Zhu Y. C. ; Qian Y. T. J. Mater. Chem. A 2015, 3, 1400.
doi: 10.1039/C4TA06018K
118 Qu Q. T. ; Shi Y. ; Tian S. ; Chen Y. H. ; Wu Y. P. ; Holze R. J. Power Sources 2009, 194, 1222.
doi: 10.1016/j.jpowsour.2009.06.068
119 Zhang B. H. ; Liu Y. ; Wu X. W. ; Yang Y. Q. ; Chang Z. ; Wen Z. B. ; Wu Y. P. Chem. Commun. 2014, 50, 1209.
doi: 10.1039/c3cc48382g
120 Wang H. ; Zhang T. ; Chen C. ; Ling M. ; Lin Z. ; Zhang S. Q. ; Pan F. ; Liang C. D. Nano Res. 2017.
doi: 10.1007/s12274-017-1657-5
121 Gao H. C. ; Goodenough J. B. Angew. Chem. Int. Ed. 2016, 128, 12960.
doi: 10.1002/ange.201606508
[1] 赵明宇, 朱琳, 付博文, 江素华, 周永宁, 宋云. NiCo2S4六角片作为钠离子电池负极材料的电化学性能及储钠动力学[J]. 物理化学学报, 2019, 35(2): 193-199.
[2] 张熙悦,黄雅兰,吴树炜,曾银香,于明浩,程发良,卢锡洪,童叶翔. 碳布负载的缺氧型Na2Ti3O7纳米带阵列作为高性能柔性钠离子电池负极材料[J]. 物理化学学报, 2018, 34(2): 219-226.
[3] 何磊.,徐俊敏.,王永建.,张昌锦.. LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13O2锂离子电池正极材料:增强的库伦效率和循环性能[J]. 物理化学学报, 2017, 33(8): 1605-1613.
[4] 甘永平,林沛沛,黄辉,夏阳,梁初,张俊,王奕顺,韩健峰,周彩红,张文魁. 表面活性剂对氧化铝修饰富锂锰基正极材料的影响[J]. 物理化学学报, 2017, 33(6): 1189-1196.
[5] 甄绪,郭雪静. 三维介孔钴酸锌立方体的制备及其优异的储锂性能[J]. 物理化学学报, 2017, 33(4): 845-852.
[6] 赵立平,孟未帅,王宏宇,齐力. 二硫化钼-碳复合材料用作钠离子电容电池负极材料[J]. 物理化学学报, 2017, 33(4): 787-794.
[7] 吴中,张新波. 高容量超级电容器电极材料的设计与制备[J]. 物理化学学报, 2017, 33(2): 305-313.
[8] 贾朝阳,刘美男,赵新洛,王贤树,潘争辉,张跃钢. 基于三维花状五氧化二铌及活性炭的锂离子混合电容器[J]. 物理化学学报, 2017, 33(12): 2510-2516.
[9] 牛晓叶,杜小琴,王钦超,吴晓京,张昕,周永宁. AlN-Fe纳米复合薄膜:一种新型锂离子电池负极材料[J]. 物理化学学报, 2017, 33(12): 2517-2522.
[10] 彭勃,徐耀林,Fokko M. Mulder. 磷烯包覆的高性能硅基锂离子电池负极材料[J]. 物理化学学报, 2017, 33(11): 2127-2132.
[11] 方永进,陈重学,艾新平,杨汉西,曹余良. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
[12] 唐艳平,元莎,郭玉忠,黄瑞安,王剑华,杨斌,戴永年. 镁热还原法制备有序介孔Si/C锂离子电池负极材料及其电化学性能[J]. 物理化学学报, 2016, 32(9): 2280-2286.
[13] 黄威,邬春阳,曾跃武,金传洪,张泽. 富锂正极材料Li1.2Mn0.54Co0.13Ni0.13NaxO2表面结构的电子显微分析[J]. 物理化学学报, 2016, 32(9): 2287-2292.
[14] 汪靖伦,闫晓丹,雍天乔,张灵志. 过充保护添加剂氰基功能化2, 5-二叔丁基对苯二酚的合成及其在锂离子电池中的应用[J]. 物理化学学报, 2016, 32(9): 2293-2300.
[15] 白守礼,李欣,文越华,程杰,曹高萍,杨裕生,李殿卿. 电解液对水系可充电池MnO2正极电化学性能的影响[J]. 物理化学学报, 2016, 32(8): 2007-2017.