Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (6): 598-617    DOI: 10.3866/PKU.WHXB201711231
综述     
维生素E的催化合成路线分析
王哲,毛善俊,李浩然,王勇*()
How to Synthesize Vitamin E
Zhe WANG,Shanjun MAO,Haoran LI,Yong WANG*()
 全文: PDF(2573 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

维生素E具有多种特异的生理活性,同时也是一种优良的抗氧化剂,已经逐渐成为维生素领域中的焦点,市场需求不断增加。目前合成维生素E占据市场的80%以上,提升维生素E的产量和生产效率势在必行。天然维生素E包括四种生育酚类物质和四种生育三烯酚类物质,其中α-生育酚含量最大,生理活性也最高。本综述简要介绍α-生育酚的合成路线,其中包括2, 3, 5-三甲基氢醌和异植物醇的合成以及它们二者缩合的反应。本文着重阐述路线的设计和催化剂的选择,并对存在的问题及潜在的解决办法进行评述和展望。

关键词: 维生素E生育酚2, 3, 5-三甲基氢醌异植物醇催化剂    
Abstract:

Vitamin E compounds are biologically active and are frequently used as antioxidants. The demand for Vitamin E compounds has increased significantly in recent years, and at present, more than 80% of the market demand for Vitamin E is fulfilled by its synthetic counterparts. Therefore, it is imperative to increase the production of Vitamin E. Vitamin E compounds contain tocopherol and tocotrienol derivatives, and α-tocopherol, which dominates the sound, is the most biologically active. This review covers the methods of preparation of α-tocopherol, focusing on the synthesis routes, chemical reactions, and corresponding catalysts. The synthesis of Vitamin E, including preparation of 2, 3, 5-trimethylhydroquinone (TMHQ), preparation of isophytol, and condensation of TMHQ and isophytol are discussed in detail. The disadvantages and issues related to the preparation methods are also included. In general, the preparation of TMHQ comprises three steps: (1) methylation of m-cresol to 2, 3, 6-trimethylphenol, (2) oxidation of 2, 3, 6-trimethylphenol to 2, 3, 5-trimethylbenzoquione (TMBQ), and (3) hydrogenation of TMBQ to TMHQ. Recently, a novel and attractive method using isophorone, which can be produced by self-condensation of acetone, as a source for synthesizing TMHQ has been developed. Among these procedures, it is important to attain high selectivity in the oxidative reactions, including oxidation of 2, 3, 6-trimethylphenol and isophorone (α-isophorone or β-isophorone), and to replace H2O2, a common oxidant, by oxygen or air. One of the methods of preparation of isophytol using citral as a source has been abandoned because of shortage of oil of litsea cubeba, which is a natural source of citral. Linalool, produced from 6-methyl-5-hepten-2-one, is a key intermediate in the main process of preparation of isophytol. Both BASF SE and Roche have developed effective methods for the preparation of 6-methyl-5-hepten-2-one, respectively. Semi-hydrogenation of alkynols plays a key role in the whole process. The selectivity, especially at high conversion is directly related to the profit; therefore, it is of great importance for industries. The condensation of TMHQ and isophytol is essentially a Friedel-Crafts alkylation reaction catalyzed by acids. Similar reactions include methylation of m-cresol. Bronsted acids are usually effective for these reactions; however, it is difficult to recover these catalysts from the homogeneous systems. Therefore solid acid has a great potential in this area and it is also a promising topic to reduce the loss of acid sites when using acid-immobilized catalysts. The supply of various sources of the reactants and the local policy need to be considered while choosing an appropriate method for the preparation of Vitamin E.

Key words: Vitamin E    Tocopherol    2, 3, 5-trimethylhydroquinone    Isophytol    Catalyst
收稿日期: 2017-10-11 出版日期: 2017-11-23
基金资助: 国家自然科学基金(21622308);国家自然科学基金(91534114);国家自然科学基金(21376208)
通讯作者: 王勇     E-mail: chemwy@zju.edu.cn
作者简介: 王勇,浙江大学化学系教授,催化研究所所长。中组部“万人计划”青年拔尖人才及国家优秀青年基金获得者。2002年本科毕业于湘潭大学化工学院,2007年博士毕业于浙江大学化工系。作为项目负责人承担多项国家及省部级项目。王勇课题组致力于新材料在传统多相催化反应、能源转化等方面的应用,所研发的多个催化剂在工业上得到应用
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王哲
毛善俊
李浩然
王勇

引用本文:

王哲,毛善俊,李浩然,王勇. 维生素E的催化合成路线分析[J]. 物理化学学报, 2018, 34(6): 598-617, 10.3866/PKU.WHXB201711231

Zhe WANG,Shanjun MAO,Haoran LI,Yong WANG. How to Synthesize Vitamin E. Acta Phys. -Chim. Sin., 2018, 34(6): 598-617, 10.3866/PKU.WHXB201711231.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201711231        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I6/598

图1  维生素E的结构示意图(1:生育酚,2:生育三烯酚)
图2  三甲基氢醌(4)与异植物醇(5)缩合生成α-生育酚(3)
图3  间甲苯酚法制备TMHQ的工艺路线图
图4  铁氧化物催化间甲苯酚邻位甲基化的反应机理9
图5  苯酚在不同催化剂表面的吸附方式10
图6  [Cu4(μ4-O)Cl10]-4的结构22
图7  2, 3, 6-三甲基苯酚氧化至TMBQ的反应机理22
图8  Ti基催化剂上2, 3, 6-三甲基苯酚氧化为TMBQ的“双位点”机理33
图9  Pd催化剂在TMBQ催化加氢反应中的套用性能42
图10  (a) CoOx@CN催化TMBQ加氢的示意图;(b) TMBQ加氢过程中反应物、中间态及产物在Co(111)表面的势能变化图45
图11  对叔丁基苯酚法制备TMHQ的工艺路线图
图12  苯酚法制备TMHQ的工艺路线图
图13  二乙基酮法制备TMHQ的工艺路线图
图14  1-胺基-2-乙烯基甲基酮的分子结构
图15  偏三甲苯法制备TMHQ的工艺路线图
图16  5-异丙基偏三甲苯法制备TMHQ的工艺路线图
图17  异氟尔酮法制备TMHQ的工艺路线图
图18  β-异氟尔酮到KIP的两种自由基机理80
图19  异植物醇的分子结构
图20  假紫罗兰铜工艺制备异植物醇
图21  异植物醇的两种主流合成工艺
图22  Pd纳米晶催化炔醇加氢的尺寸效应112
图23  (a,b)PdZn/CN@ZnO的HRTEM图像;(c)几种Pd催化剂的炔醇加氢催化活性;(d)几种Pd催化剂催化炔醇加氢的选择性122
图24  烯醇丙酮化反应的两条路径
图25  异戊二烯法制备香叶基丙酮的合成路线
图26  以1-氯-3甲基-2丁烯为原料制备6, 10-二甲基-6, 9-十一碳二烯-2-酮的合成路线
图27  以3, 7-二甲基-2-辛烯-1-醇为原料制备植酮的合成路线
图28  α-蒎烯制备芳樟醇的工艺路线
图29  以月桂烯为原料制备香叶基丙酮或橙花基丙酮的合成路线
图30  TMHQ和异植物醇的缩合反应(实箭头代表主反应,虚箭头代表副反应)
图31  -NH型和-CH型含氟强酸的结构及制备方法167
1 Traber M. G. Annu. Rev. Nutr. 2007, 27, 347.
doi: 10.1146/annurev.nutr.27.061406.093819
2 Sun J. M. ; Lu H. F. ; Nan J. L. Tianjin Chem. Ind. 2002, 5, 26.
doi: 10.3969/j.issn.1008-1267.2002.05.012
孙建梅; 陆洪芳; 南家莲. 天津化工, 2002, 5, 26.
doi: 10.3969/j.issn.1008-1267.2002.05.012
3 Eckstein S. ; Hintermeier P. H. ; Olarte M. V. ; Liu Y. ; Baráth E. ; Lercher J. A. J. Catal. 2017, 352, 329.
doi: 10.1016/j.jcat.2017.06.002
4 Leach B. L. Process for direct methylation of phenol in liquid phase. US 399, 4982A 1975.
5 Leach B. E. Process for the synthesis of 2, 6-xylenol and 2, 3, 6-trimethylphenol. US 428, 3574A 1980.
6 Velu S. ; Sivasanker S. Res. Chem. Intermediat 1998, 24, 657.
doi: 10.1163/156856798x00555
7 Grabowska H. ; Wrzyszcz J. ; Syper L. Catal. Lett. 1999, 57, 135.
doi: 10.1023/a:1019083112771
8 Xiao G. M. ; Li Z.S. ; Jiang F. ; Niu L. ; Xiong Z. Catalyst for synthesizing 2, 3, 6-trimethylphenol and preparation method thereof. CN, 10297, 4354A 2013.
9 Niu L. ; Li Z. S. ; Jiang F. ; Zhou M. H. ; Wang Z. H. ; Xiao G. M. React. Kinet. Mech. Cat. 2014, 112, 199.
doi: 10.1007/s11144-014-0697-z
10 Gandhe A. R. ; Fernandes J. B. Catal. Commun. 2004, 5, 89.
doi: 10.1016/j.catcom.2003.11.017
11 Gandhe A. R. ; Naik S. P. ; Kakodkar S. B. ; Fernandes J. B. Catal. Commun. 2006, 7, 285.
doi: 10.1016/j.catcom.2005.09.013
12 Santacesaria E. ; Grasso D. ; Gelosa D. ; Carrá S. Appl. Catal. 1990, 64, 83.
doi: 10.1016/S0166-9834(00)81555-9
13 Sreekumar K. ; Sugunan S. Appl. Catal. A 2002, 230, 245.
doi: 10.1016/S0926-860X(02)00006-6
14 Bezouhanova C. ; Al-Zihari M. A. Appl. Catal. A 1992, 83, 45.
doi: 10.1016/0926-860X(92)80024-7
15 Qian D. ; He H. Q. ; Wang K. Y. Chem. Reagents(Beijing, China) 2002, 4, 231.
doi: 10.3969/j.issn.0258-3283.2002.04.016
钱东; 何厚群; 王开毅. 化学试剂, 2002, 4, 231.
doi: 10.3969/j.issn.0258-3283.2002.04.016
16 Bodnar Z. ; Mallat T. ; Baiker A. J. Mol. Catal. A-Chem. 1996, 110, 55.
doi: 10.1016/1381-1169(96)00042-8
17 Li X. ; Wang X. Y. ; Shu W. G. ; Qian D. Hunan Chem. Ind. 1998, 5, 24.
doi: 10.19342/j.cnki.issn.1009-9212.1998.05.010
李雄; 王歆燕; 舒万艮; 钱东. 湖南化工, 1998, 5, 24.
doi: 10.19342/j.cnki.issn.1009-9212.1998.05.010
18 Chu Z. H. ; Zang H. C. Guangzhou Chem. Ind. 2011, 9, 104.
doi: 10.3969/j.issn.1001-9677.2011.09.037
储振华; 臧恒昌. 广东化工, 2011, 9, 104.
doi: 10.3969/j.issn.1001-9677.2011.09.037
19 Takehira K. ; Shimizu M. ; Watanabe Y. ; Orita H. ; Hayakawa T. J. Chem. Soc., Chem. Commun. 1989, 1705.
doi: 10.1039/C39890001705
20 Takehira K. ; Shimizu M. ; Watanabe Y. ; Orita H. ; Hayakawa T. Tetrahedron Lett. 1989, 30, 6691.
doi: 10.1016/S0040-4039(00)70652-6
21 Shimizu M. ; Watanabe Y. ; Orita H. ; Hayakawa T. ; Takehira K. B. Chem. Soc. Jpn. 1992, 65, 1522.
doi: 10.1246/bcsj.65.1522
22 Sun H. J. ; Harms K. ; Sundermeyer J. J. Am. Chem. Soc. 2004, 126, 9550.
doi: 10.1021/ja0391964
23 Wang X. P. ; Yang R. Y. ; Li W. ; Li X. A. ; Yan J. ; Liu W. T. ; Zhang H. H. Ind. Catal. 2013, 8, 73.
doi: 10.3969/j.issn.1008-1143.2013.08.016
王宪沛; 杨瑞云; 李文; 李小安; 阎俊; 刘卫涛; 张辉辉. 工业催化, 2013, 8, 73.
doi: 10.3969/j.issn.1008-1143.2013.08.016
24 Guan W. H. ; Wang C. M. ; Yun X. ; Hu X. B. ; Wang Y. ; Li H. R. Catal. Commun. 2008, 9, 1979.
doi: 10.1016/j.catcom.2008.03.028
25 Wang C. ; Guan W. ; Xie P. ; Yun X. ; Li H. ; Hu X. ; Wang Y. Catal. Commun. 2009, 10, 725.
doi: 10.1016/j.catcom.2008.11.027
26 Kholdeeva O. A. ; Golovin A. V. ; Kozhevnikov I. V. React. Kinet. Catal. L. 1992, 46, 107.
doi: 10.1007/bf02096685
27 Kholdeeva O. A. ; Golovin A. V. ; Maksimovskaya R. I. ; Kozhevnikov I. V. J. Mol. Catal. 1992, 75, 235.
doi: 10.1016/0304-5102(92)80128-4
28 Qian D. ; Zhang M. ; Wang K. Y. Chin. J. Synth. Chem. 1998, 2, 2.
doi: 10.15952/j.cnki.cjsc.1998.02.001
钱东; 张敏; 王开毅. 合成化学, 1998, 2, 2.
doi: 10.15952/j.cnki.cjsc.1998.02.001
29 Palacio M. ; Villabrille P. I. ; Romanelli G. P. ; Vázquez P. G. ; Cáceres C. V. Appl. Catal. A 2012, 417, 273.
doi: 10.1016/j.apcata.2011.12.049
30 Lin T. H. ; Chen C. C. ; Jang L. Y. ; Lee J. F. ; Cheng S. Micropor. Mesopor. Mater. 2014, 198, 194.
doi: 10.1016/j.micromeso.2014.07.027
31 Trukhan N. N. ; Romannikov V. N. ; Paukshtis E. A. ; Shmakov A. N. ; Kholdeeva O. A. J. Catal. 2001, 202, 110.
doi: 10.1006/jcat.2001.3264
32 Zhou J. ; Hua Z. L. ; Cui X. Z. ; Ye Z. Q. ; Cui F. M. ; Shi J. L. Chem. Commun. 2010, 46, 4994.
doi: 10.1039/C0CC00499E
33 Kholdeeva O. A. ; Ivanchikova I. D. ; Guidotti M. ; Ravasio N. ; Sgobba M. ; Barmatova M. V. Catal. Today 2009, 141, 330.
doi: 10.1016/j.cattod.2008.06.005
34 Wu M. Z. ; Li Y. ; Huang X. Z. ; Liu W. ; Yi Z. Z. Appl. Chem. Ind.(Xi'an, China) 2014, 3, 456.
doi: 10.16581/j.cnki.issn1671-3206.2014.03.004
吴明珠; 李应; 黄相中; 刘卫; 易中周. 应用化工, 2014, 3, 456.
doi: 10.16581/j.cnki.issn1671-3206.2014.03.004
35 Li Y. ; Liu W. ; Wu M. Z. ; Yi Z. Z. ; Zhang J. C. Mendeleev. Comm. 2010, 20, 218.
doi: 10.1016/j.mencom.2010.06.012
36 Liu Y. C. ; Hsu J. ; Fu Y. P. ; Tsai K. Int. J. Hydrog. Energy 2016, 41, 15696.
doi: 10.1016/j.ijhydene.2016.04.127
37 Zhang T. Y. ; Wang M. Y. ; Li B. ; Liu Q. Chem. Ind. Eng. Prog.(Beijing, China) 2016, 2, 513.
doi: 10.16085/j.issn.1000-6613.2016.02.025
张天永; 王梦颖; 李彬; 刘茜. 化工进展, 2016, 2, 513.
doi: 10.16085/j.issn.1000-6613.2016.02.025
38 Zhu Z. Q. ; Yuan Z. F. ; Xu Q. F. Preparation method of 2, 3, 5-trimethylhydroquinone. CN, 10224, 1577A 2011.
39 Zhang T. Y. ; Yin G. ; Li B. ; Wang X. ; Jiang S. ; Yuan Z. F. Res. Chem. Intermediat 2015, 41, 663.
doi: 10.1007/s11164-013-1219-8
40 Qian D. ; Wang K. Y. ; Yang L. Y. ; Zhang M. K. J. Cent. South Univ.(Sci. Technol.) 2000, 1, 41.
钱东; 王开毅; 杨礼义; 张茂昆. 中南工业大学学报(自然科学版), 2000, 1, 41.
41 Qian D. ; Wang K. Y. ; Yang L. Y. ; Zhang M. K. J. Cent. South Univ.(Sci. Technol.) 1998, 5, 97.
钱东; 王开毅; 杨礼义; 张茂昆. 中南工业大学学报(自然科学版), 1998, 5, 97.
42 Zhao X. M. ; Jin Y. ; Zhang F. M. ; Zhong Y. J. ; Zhu W. D. Chem. Eng. J. 2014, 239, 33.
doi: 10.1016/j.cej.2013.11.003
43 Zhang T. Y. ; Yin G. ; Li B. ; Deng Y. F. ; Yuan Z. F. Appl. Chem. Ind.(Xi'an, China) 2013, 8, 1363.
doi: 10.16581/j.cnki.issn1671-3206.2013.08.034
张天永; 尹观; 李彬; 邓永峰; 袁仲飞. 应用化工, 2013, 8, 1363.
doi: 10.16581/j.cnki.issn1671-3206.2013.08.034
44 Mukhopadhyay S. ; Chandnani K. H. ; Chandalia S. B. Org. Process. Res. Dev. 2000, 4, 254.
doi: 10.1021/op990074z
45 Su D. F. ; Wei Z. Z. ; Mao S. J. ; Wang J. ; Li Y. ; Li H. R. ; Chen Z. R. ; Wang Y. Catal. Sci. Technol. 2016, 6, 4503.
doi: 10.1039/C5CY02171E
46 Qiao J. C. ; Chen Q. ; Cai D. W. Process for synthesizing 2, 3, 6-trimethylphenol by 4-tert-butylphenol. CN, 10297, 6902A 2013.
47 Zhao J. C. ; Han Q. Y. ; Liu J. F. ; Liu L. ; Hu L. L. ; Liu Y. H. Method for extraction of 2, 4, 6-trimethylphenol from 2, 6-dimethylphenol waste. CN, 10404, 5522A 2014.
48 Teijin LTD Preparation of 2, 4, 6-trimethylphenol GB 145, 1091A 1973.
49 Bonrath W. ; Schuetz J. ; Cavani F. Manufacture of 2, 4, 6-trimethylphenol. WO, 2015197586A1 2015.
50 Ichikawa Y. ; Yamanaka Y. ; Tsuruta H. Novel process for preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadiene-1-one. US 396, 6818A 1973.
51 Toyoda Y. ; Ikeda Y. ; Hase T. ; Kitano N. Preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS 584, 1835A 1981.
52 Tomita T. ; Kino M. ; Takada T. Preparation of 4-hydroxy-2, 4, 6-trimethylcyclohexa-2, 5-dien-1-one. JPS, 5811, 6435A 1981.
53 Tomita T. ; Kino M. ; Takada T. Preparation of hydroxy-tri:methyl-cyclo-hexa-dienone—by reacting tri:methyl-phenol with hypohalous acid. JPS, 5916, 3337A 1983.
54 Yoshida D. Production of high-purity 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS, 6223, 8230A 1986.
55 Gogou T. Preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadien-1-one. JPS 595, 3438A 1982.
56 Costantini M. ; Igersheim F. ; Krumenacker L. Process for the preparation of 4-hydroxy-2, 4, 6-trimethyl-2, 5-cyclohexadienone. US 456, 5895A 1984.
57 Costantini M. ; Igersheim F. ; Krumenacker L. 4-Hydroxy 2, 4, 6-tri:methyl cyclohexadienone preparation—by chlorination and hydrolysis of 2, 4, 6-tri:methyl phenol. US 461, 2401A 1986.
58 Teijin LTD Preparation of trimethyl hydroquinone GB 143, 9494A 1973.
59 Qiao J. C. ; Chen Q. ; Cai D. W. Process for synthesizing 2, 3, 6-trimethylphenol by phenol. CN, 10297, 6903A 2013.
60 Arnold L. ; Pasedach H. ; Pommer H. 2, 3, 6-Trimethylphenol production—by reacting diethyl ketone in presence of base with e.g. crotonaldehyde. DE, 1668874B1 1971.
61 Tavs P. ; Laas H. ; Schauer H. ; Arnold L. Increasing the yield of 2.5.6-trimethylcyclohex-2-en-1-one. US 482, 0874A 1989.
62 Rittinger S. ; Rieber N. ; Arnold L. ; Hoercher U. Production of 2, 3, 6-tri:methylphenol—by reacting di:ethyl ketone with 1-amino-vinyl methyl ketone at 50-200 deg.C. DE, 4414877A1 1995.
63 Nissei IND CO LTD Trimethylbenzoquinone production in aq. soln from 3, 6-dinitrotrimethyl benzene sulphonate using ferric salt as oxidising agent. JP 7502, 8426B 1975.
64 Bao J. ; Liu G. F. ; Gao R. ; Zhang Y. 2016, 4, 187.
doi: 10.3969/j.issn.1008-4800.2016.04.121
包吉; 刘高赋; 高荣; 张雨. 化工管理, 2016, 4, 187.
doi: 10.3969/j.issn.1008-4800.2016.04.121
65 Chen H. ; Wu Y. ; Xu G. M. Adv. Fine Petrochem. 2002, 4, 25.
doi: 10.3969/j.issn.1009-8348.2002.04.008
陈红; 吴缨; 徐国梅. 精细石油化工进展, 2002, 4, 25.
doi: 10.3969/j.issn.1009-8348.2002.04.008
66 Zhao F. ; Yang B. Y. ; Gu J. J. ; Guan P. M. Ind. Catal. 2012, 6, 62.
doi: 10.3969/j.issn.1008-1143.2012.06.014
赵峰; 杨蓓玉; 顾剑江; 管盘铭. 工业催化, 2012, 6, 62.
doi: 10.3969/j.issn.1008-1143.2012.06.014
67 Zhang T. Y. ; Liu X. S. ; Li B. ; Wang M. Y. ; Wang Z. C. ; Hai L. Chem. Bull.(Beijing, China) 2017, 6, 573.
doi: 10.14159/j.cnki.0441-3776.2017.06.010
张天永; 刘晓思; 李彬; 王梦颖; 王智超; 海莉. 化学通报, 2017, 6, 573.
doi: 10.14159/j.cnki.0441-3776.2017.06.010
68 Zhang T. Y. ; Duan Y. J. ; Li B. ; Wang X. ; Du J. ; Yin G. ; Yuan Z. F. Chem. Reagents(Beijing, China) 2013, 1, 3.
doi: 10.13822/j.cnki.hxsj.2013.01.016
张天永; 段永洁; 李彬; 王晓; 杜晶; 尹观; 袁仲飞. 化学试剂, 2013, 1, 3.
doi: 10.13822/j.cnki.hxsj.2013.01.016
69 Dawson B. ; Pugach J. Method of making ketoisophorone via oxidation of isophorone with tert-butyl hydroperoxide. WO, 9615094A1 1996.
70 Noesberger P. ; Vieth A. Process for manufacture of beta-isophorone. US 527, 6197A 1994.
71 Krill S. ; Giray G. ; Huthmacher K. ; Huebner F. ; Tanner H. Method of producing 3, 5, 5-trimethylcyclohexa-3-ene-1-one(beta -isophorone) by the isomerization of 3, 5, 5-trimethylcyclohexa-2-ene-1-(alpha-isophorone). US 600, 5147A 1999.
72 Takahashi I. ; Shibata H. Oxidation catalyst and oxidation process using the same. US, 6462239B2 2002.
73 Ina T. ; Miura H. ; Takahashi I. Process for the production of ketoisophorone derivatives and equipment therefor. US, 6410797B1 2002.
74 Murphy E. F. ; Baiker A. J. Mol. Catal. A-Chem. 2002, 179, 233.
doi: 10.1016/S1381-1169(01)00342-9
75 Bellut H. Method of producing 2, 6, 6-trimethyl-2-cyclohexane-1, 4-dione. US 497, 0347A 1990.
76 Hu X. B. ; Mao J. Y. ; Sun Y. ; Chen H. ; Li H. R. Catal. Commun. 2009, 10, 1908.
doi: 10.1016/j.catcom.2009.06.024
77 Chen Z. R. ; Fang T. T. ; Yuan S. F. ; Yin H. Int. J. Chem. Kinet. 2016, 48, 295.
doi: 10.1002/kin.20987
78 Beyrhouty M. ; Sorokin A. B. ; Daniele S. ; Hubert-Pfalzgraf L. G. New J. Chem. 2005, 29, 1245.
doi: 10.1039/B507211E
79 Sorokin A. B. ; Quignard F. ; Valentin R. ; Mangematin S. Appl. Catal. A 2006, 309, 162.
doi: 10.1016/j.apcata.2006.03.060
80 Burns E. ; Huang T. ; Weare W. W. ; Bartolotti L. ; Wang X. Y. ; Yao J. ; Li H. R. ; Franzen S. J. Mol. Catal. A-Chem. 2015, 410, 110.
doi: 10.1016/j.molcata.2015.09.015
81 Thatte C. S. ; Rathnam M. V. ; Pise A. C. J. Chem. Sci. 2014, 126, 727.
doi: 10.1007/s12039-014-0601-4
82 Mao J. Y. ; Li N. ; Li H. R. ; Hu X. B. J. Mol. Catal. A-Chem. 2006, 258, 178.
doi: 10.1016/j.molcata.2006.05.051
83 Zhang P. F. ; Li H. R. ; Wang Y. Chem. Commun. 2014, 50, 6312.
doi: 10.1039/c4cc02676d
84 Kishore D. ; Rodrigues A. E. Catal. Commun. 2007, 8, 1156.
doi: 10.1016/j.catcom.2006.10.037
85 Kishore D. ; Rodrigues A. E. Appl. Catal. A 2008, 345, 104.
doi: 10.1016/j.apcata.2008.04.029
86 Wang C. M. ; Wang G. L. ; Mao J. Y. ; Yao Z. ; Li H. R. Catal. Commun. 2010, 11, 758.
doi: 10.1016/j.catcom.2010.02.010
87 Chen K. X. ; Sun Y. ; Wang C. M. ; Yao J. ; Chen Z. R. ; Li H. R. Phys. Chem. Chem. Phys. 2012, 14, 12141.
doi: 10.1039/C2CP41617D
88 Zhong W. Z. ; Mao L. Q. ; Xu Q. ; Fu Z. H. ; Zou G. Q. ; Li Y. Q. ; Yin D. L. ; Luo H. ; Kirk S. R. Appl. Catal. A 2014, 486, 193.
doi: 10.1016/j.apcata.2014.08.005
89 Murphy E. F. ; Mallat T. ; Baiker A. ; Schneider M. Appl. Catal. A 2000, 197, 295.
doi: 10.1016/S0926-860X(99)00491-3
90 Crier S. ; Huthmacher K. Method for preparation of 2, 3, 5-trimethyl hydrochinone di-ester. CN 126, 5390A 2000.
91 Weigel H. ; Krill S. ; Hasselbach H. ; Huthmacher K. ; Wegel H. ; Kelier S. ; Haserbach H. Process for preparing esterified chroman compounds. US, 6329535B1 2001.
92 Bonrath W. ; Schneider M. ; Werner B. ; Michael S. Manufacture of trimethylhydroquinone diacylates. CN 160, 4888A 2005.
93 Weigel H. ; Krill S. ; Hasselbach H. ; Huthmacher K. ; Wegel H. ; Kelier S. ; Haserbach H. Preparation process of exterified chroman compound. CN 130, 8077A 2001.
94 Wildermann A. ; Foricher Y. ; Netscher T. ; Bonrath W. Pure Appl. Chem. 2007, 79, 1839.
doi: 10.1351/pac200779111839
95 Zeng Q. Y. ; Song W. J. ; Zhang Q. ; Pan H. ; Gao J. Y. ; Ni C. Y. Method for synthesizing 2, 3, 5-trimethylhydroquinone diester. CN, 10218, 0793A 2011, 8
96 Schneider M. ; Zimmermann K. ; Aquino F. ; Bonrath W. Appl. Catal. A 2001, 220, 51.
doi: 10.1016/S0926-860X(01)00704-9
97 Rác B. ; Molnár á. ; Forgo P. ; Mohai M. ; Bertóti I. J. Mol. Catal. A-Chem. 2006, 244, 46.
doi: 10.1016/j.molcata.2005.08.043
98 Hinze R. ; Laufer M. C. ; H?lderich W. F. ; Bonrath W. ; Netscher T. Catal. Today 2009, 140, 105.
doi: 10.1016/j.cattod.2008.07.008
99 Aec Chim Organ Biolog Improvements in and relating to process of preparing isophytol. GB 108, 7837A 1967.
100 Kuśtrowski P. ; Sułkowska D. ; Chmielarz L. ; Dziembaj R. Appl. Catal. A 2006, 302, 317.
doi: 10.1016/j.apcata.2006.02.003
101 Abelló S. ; Vijaya-Shankar D. ; Pérez-Ramírez J. Appl. Catal. A 2008, 342, 119.
doi: 10.1016/j.apcata.2008.03.010
102 Díez V. K. ; Di Cosimo J. I. ; Apesteguía C. R. Appl. Catal. A 2008, 345, 143.
doi: 10.1016/j.apcata.2008.04.035
103 Abelló S. ; Medina F. ; Tichit D. ; Pérez-Ramírez J. ; Rodríguez X. ; Sueiras J. E. ; Salagre P. ; Cesteros Y. Appl. Catal. A 2005, 281, 191.
doi: 10.1016/j.apcata.2004.11.037
104 Díez V. K. ; Apesteguía C. R. ; Di Cosimo J. I. J. Catal. 2006, 240, 235.
doi: 10.1016/j.jcat.2006.04.003
105 Hoelderich W. ; Ritzerfeld V. Preparing pseudoionone by aldol condensation of citral and acetone using heterogeneous catalyst, comprises utilizing supported heterogeneous catalysts based on rare earth metals applied on e.g. zirconium dioxide carrier as carrier materials. DE, 102012012785A1 2013.
106 Wang Z. ; Lu G. Z. ; Guo Y. ; Guo Y. L. ; Gong X. Q. ACS Sustain. Chem. Eng. 2016, 4, 1591.
doi: 10.1021/acssuschemeng.5b01533
107 Raju V. ; Radhakrishnan R. ; Jaenicke S. ; Chuah G. K. Catal. Today 2011, 164, 139.
doi: 10.1016/j.cattod.2010.10.043
108 Horst P. ; Herbert M. ; Hermann O. Preparing alkenones 2-methylheptene-1-on-6 from. DE 126, 8135B 1968.
109 Babler J. H. Process for preparing tertiary alkynols. US 534, 9071A 1994.
110 Vorobyeva E. ; Chen Z. ; Mitchell S. ; Leary R. K. ; Midgley P. ; Thomas J. M. ; Hauert R. ; Fako E. ; Lopez N. ; Perez-Ramirez J. J. Mater. Chem. A 2017, 5, 16393.
doi: 10.1039/C7TA04607C
111 Crespo-Quesada M. ; Yarulin A. ; Jin M. ; Xia Y. ; Kiwi-Minsker L. J. Am. Chem. Soc. 2011, 133, 12787.
doi: 10.1021/ja204557m
112 Yarulin A. ; Yuranov I. ; Cárdenas-Lizana F. ; Abdulkin P. ; Kiwi-Minsker L. J. Phys. Chem. C 2013, 117, 13424.
doi: 10.1021/jp402258s
113 Semagina N. ; Renken A. ; Kiwi-Minsker L. J. Phys. Chem. C 2007, 111, 13933.
doi: 10.1021/jp073944k
114 Tripathi B. ; Paniwnyk L. ; Cherkasov N. ; Ibhadon A. O. ; Lana-Villarreal T. ; Gómez R. Ultrason. Sonochem. 2015, 26, 445.
doi: 10.1016/j.ultsonch.2015.03.006
115 Tschan R. ; Schubert M. M. ; Baiker A. ; Bonrath W. ; Lansink-Rotgerink H. Catal. Lett. 2001, 75, 31.
doi: 10.1023/a:1016727904935
116 Tschan R. ; Wandeler R. ; Schneider M. S. ; Burgener M. ; Schubert M. M. ; Baiker A. Appl. Catal. A 2002, 223, 173.
doi: 10.1016/S0926-860X(01)00755-4
117 Studt F. ; Abild-Pedersen F. ; Bligaard T. ; S∅rensen R. Z. ; Christensen C. H. ; N∅rskov J. K. Science 2008, 320, 1320.
doi: 10.1126/science.1156660
118 Yarulin A. ; Yuranov I. ; Cárdenas-Lizana F. ; Alexander D. T. L. ; Kiwi-Minsker L. Appl. Catal. A 2014, 478, 186.
doi: 10.1016/j.apcata.2014.04.003
119 SNAM SPA(SNAM-C) Selective hydrogenation of alkynols to alkenols—in aqs medium using palladium catalyst and soluble zinc cpd. NL 13, 6588B 1972.
120 Okhlopkova L. B. ; Matus E. V. ; Prosvirin I. P. ; Kerzhentsev M. A. ; Ismagilov Z. R. J. Nanopart. Res. 2015, 17, 475.
doi: 10.1007/s11051-015-3289-6
121 Deng D. S. ; Yang Y. ; Gong Y. T. ; Li Y. ; Xu X. ; Wang Y. Green Chem. 2013, 15, 2525.
doi: 10.1039/c3gc40779a
122 Shen L. F. ; Mao S. J. ; Li J. Q. ; Li M. M. ; Chen P. ; Li H. R. ; Chen Z. R. ; Wang Y. J. Catal. 2017, 350, 13.
doi: 10.1016/j.jcat.2017.01.021
123 Bonrath W. ; Mueller T. ; Kiwi-Minsker L. ; Renken A. ; Iouranov I. ; Kiwi M. Hydrogenation process. CN, 10274, 1206A 2012.
124 Bonrath W. ; Kiwi-Minsker L. ; Iouranov I. ; Kiwi M. New catalytic system. CN, 10390, 6569A 2014.
125 Bonrath W. ; Buss A. Metal powderdous catalyst comprising a Fe-alloy. CN, 10413, 6114A 2014.
126 Grjaznov V. ; Keravanov A. ; Belosljudo N. ; Ermolaev A. ; Maganjuk A. ; Saryceva I. Process for the preparation of ethylene alcohols having 4 to 10 carbon atoms. DE, 3114240A1 1982.
127 Kido Y. ; Kumagai N. ; Iwasaki H. ; Onishi T. ; Ueyama F. ; Kamiyama F. ; Kajiyashiki T. ; Kito Y. ; Iwagasaki S. Process for producing 6-methyl-3-hepten-2-one and 6-methyl-2-heptanone analogues, and process for producing phyton or isophytol. US 595, 5636A 1999.
128 Wilson S. R. ; Price M. F. J. Org. Chem. 1984, 49, 722.
doi: 10.1021/jo00178a036
129 Constant S. ; Tortoioli S. ; Müller J. ; Lacour J. Angew. Chem. Int. Ed. 2007, 46, 2082.
doi: 10.1002/anie.200604573
130 Linder D. ; Buron F. ; Constant S. ; Lacour J. Eur. J. Org. Chem. 2008, 5778.
doi: 10.1002/ejoc.200800854
131 Linder D. ; Austeri M. ; Lacour J. Org. Biomol. Chem. 2009, 7, 4057.
doi: 10.1039/B910475E
132 Bizet V. ; Lefebvre V. ; Baudoux J. ; Lasne M.-C. ; Boulangé A. ; Leleu S. ; Franck X. ; Rouden J. Eur. J. Org. Chem. 2011, 4170.
doi: 10.1002/ejoc.201100120
133 De Castro K. A. ; Byun E. Y. ; Rhee H. B. Kor. Chem. Soc. 2009, 30, 2155.
doi: 10.5012/bkcs.2009.30.9.2155
134 Oost C. ; Stroezel M. ; Etzrodt H. ; Weller D. ; Rheude U. ; Kaibel G. ; Krug T. ; Spiske L. ; Jaedicke H. ; Dietmar W. ; et al Preparation of higher unsaturated ketone. CN 127, 1716A 2000.
135 Oost C. ; Stroezel M. ; Etzrodt H. ; Weller D. ; Bockstiegel B. ; Reimer K. ; Kaibel G. ; Jaedicke H. ; Dietmar W. ; Aust C. ; et al Method for continuous preparation of unsaturated ketone. CN 125, 1832A 2000.
136 Takasago Perfumery CO(TAKS-C) Soprene trimer preparation—using a catalyst contg. zero-valent nickel and phosphines. JP 7701, 6084B 1977.
137 Akutagawa S. Geranyl acetone preparation—by reacting myrcene with acetone imine in presence of alkali metal catalyst, and hydrolysing. JP, 5307, 1005A 1978.
138 Kido Y. ; Kitayama M. ; Yoneda K. ; Iwasaki H. ; Onishi T. ; Kitayama K. Process for producing 6-methylheptan-2-one. US 584, 0992A 1998.
139 Fujita Y. ; Wada T. ; Onishi T. ; Nishida T. ; Omura S. ; Mori F. ; Hosogai T. ; Aihara F. 6, 10-Di:methyl-6, 9-undeca:diene-2-one production—by ethynylating substd. ketone obtd. from prenyl halide and mesityl oxide, partially hydrogenating and thermally rearranging. JP, 5505, 5131A 1980.
140 Kuraray Co LTD(KURS-C) Preparation of phytone and isophytol. JPS 5310, 5409A 1978.
141 Onishi T. ; Fujita Y. ; Nishida T. ; Ishiguro M. ; Hosogai T. Phytone or isophytol production—by heating propargyl alcohol cpd. hydrogenating the resulting ketone and opt. vinylation of resulting phytone. JP, 5401, 4906A 1979.
142 De Jong A. J. ; Van H. R. Process for the preparation of 6, 10, 14-trimethylpentadecan-2-one. CH, 623021A5 1981.
143 Kuraray Co LTD(KURS-C) 3, 7-dimethyl-1-octanal preparation—by hydroformylation of 2, 6-dimethyl-2-or -3-heptenes. JP 7402, 0170 1974.
144 Goebbel H. ; Kaibel G. ; Miller C. ; Dobler W. ; Dirnsteiner T. ; Hahn T. ; Breuer K. ; Aquila W. ; Gobbel H. ; Gobbel G. ; et al Production of tetrahydrogeranylacetone, for use in production of Vitamins E and K, involves selective, liquid-phase hydrogenation of pseudo-ionone using a device which inhibits the transport of catalyst particles. CN 166, 8564A 2005.
145 Clamoe A. ; Siegel W. Method for preparing higher ketone by unsaturated aldehyde. CN 133, 0062A 2002.
146 Teles J. ; Hoffmann W. Preparation of hexahydrofarnesylacetone form 6, 7-dihydrogeraniol, and novel intermadiates therefor. CN 117, 2795A 1998.
147 Zhao Z. D. ; Liu X. Z. Biomass Chem. Eng. 2001, 2, 41.
doi: 10.3969/j.issn.1673-5854.2001.02.011
赵振东; 刘先章. 林产化工通讯, 2001, 2, 41.
doi: 10.3969/j.issn.1673-5854.2001.02.011
148 Luo J. Y. ; Wang H. Z. ; Peng S. J. Chem. Ind. For. Prod. 2000, 3, 47.
doi: 10.3321/j.issn:0253-2417.2000.03.009
罗金岳; 王汉忠; 彭淑静. 林产化学与工业, 2000, 3, 47.
doi: 10.3321/j.issn:0253-2417.2000.03.009
149 Liu X. Z. ; Hu X. E. ; Jiang T. F. ; Li D. M. ; Hu G. X. Chem. Ind. For. Prod. 1997, 3, 25.
doi: 10.3321/j.issn:0253-2417.1997.03.005
刘先章; 胡樨萼; 蒋同夫; 李冬梅; 胡贵贤. 林产化学与工业, 1997, 3, 25.
doi: 10.3321/j.issn:0253-2417.1997.03.005
150 Sun M. H. ; Qi X. ; Tang X. Y. ; Zhao W. T. Chem. Ind. Eng.(Tianjin, China) 2016, 1, 51.
doi: 10.13353/j.issn.1004.9533.20131188
孙美环; 齐欣; 唐向阳; 赵温涛. 化学工业与工程, 2016, 1, 51- 56.
doi: 10.13353/j.issn.1004.9533.20131188
151 Renninger N. S. ; Newman J. ; Reiling K. K. ; Regentin R. ; Paddon C. J. Production of isoprenoids. WO, 2007140339A2 2007.
152 Renninger N. S. ; Mcphee D. J. Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. US, 2008083158A1 2008.
153 Tsuruta H. ; Lenihan J. R. ; Regentin R. WO, 2009042070A2 2009.
154 Chua P. R. ; Meadows A. Methods for stabilizing production of acetyl-coenzyme a derived compounds. WO, 2015020649A1 2015.
155 Lowack R. ; Meyer J. ; Eggersdorfer M. ; Grafen P. Preparation of alpha-tocopherol and alpha-tocopheryl acetate in liquid or supercritical carbon dioxide. US 552, 3420A 1996.
156 Baldenius K. ; Kaiser W. ; Bockstiegel B. ; Laas H. ; Schulz B. ; Schmitt P. ; Glietenberg H. Preparation of alpha-tocopherol or alpha-tocopheryl acetate by reacting trimethylhydroquinone and phytol or isophytol, with recycling of the zinc halide condensation catalyst. US 600, 5122A 1999.
157 Krill S. ; Kretz S. ; Huthmacher K. Process for the production of alpha-tocopherol acetate by condensation of trimethylhydroquinone with isophytol. EP, 1132384A2 2001.
158 Duan H. Y. ; Wang Z. H. ; Li J. T. ; Li S. H. ; Li L. J. ; Li T. S. Synthetic. Commun. 2003, 33, 1867.
doi: 10.1081/SCC-120020197
159 Coman S. M. ; Wuttke S. ; Vimont A. ; Daturi M. ; Kemnitz E. Adv. Synth. Catal. 2008, 350, 2517.
doi: 10.1002/adsc.200800411
160 Wuttke S. ; Coman S. M. ; Scholz G. ; Kirmse H. ; Vimont A. ; Daturi M. ; Schroeder S. L. M. ; Kemnitz E. Chem. -Eur. J. 2008, 14, 11488.
doi: 10.1002/chem.200801702
161 Candu N. ; Wuttke S. ; Kemnitz E. ; Coman S. M. ; Parvulescu V. I. Appl. Catal. A 2011, 391, 169.
doi: 10.1016/j.apcata.2010.08.004
162 Baak M. ; Bonrath W. ; Pauling H. Process for manufacturing d, 1-alpha-tocopherol. CN 123, 7163A 1999.
163 Bonrath W. ; Gockel S. ; Haas A. ; Netscher T. ; Pauling H. Preparation of(all-rac)-alpha-tocopherol, which is an important member of vitamin E group, involves acid catalysis of trimethylhydroquinone with isophytol or phytol in presence of bis(perfluoroalkylsulfonyl)-methane. WO, 2003070718P1 2003.
164 Bonrath W. ; Wang S. N. Preparation of d, 1-alpha-tocopherol. US, 6423851B2 2002.
165 Bonrath W. ; Dittel C. ; Netscher T. ; Pabst T. ; Giraudi L. Process for the manufacture of alpha-tocopheryl acetate. WO, 2004063182A1 2004.
166 Bonrath W. ; Haas A. ; Hoppmann E. ; Netscher T. ; Pauling H. ; Schager F. ; Wildermann A. Adv. Synth. Catal. 2002, 344, 37.
doi: 10.1002/1615-4169(200201)344:1<37::aid-adsc37>3.0.co;2-4
167 Netscher T. ; Bonrath W. ; Haas A. ; Hoppmann E. ; Pauling H. Chimia Inter. J. Chem. 2004, 58, 153.
doi: 10.2533/000942904777678181
168 Bonrath W. ; Dittel C. ; Giraudi L. ; Netscher T. ; Pabst T. Catal. Today 2007, 121, 65.
doi: 10.1016/j.cattod.2006.11.022
169 Hasegawa A. ; Ishihara K. ; Yamamoto H. Angew. Chem. Int. Ed. 2003, 42, 5731.
doi: 10.1002/anie.200352382
170 Coman S. M. ; Pop G. ; Stere C. ; Parvulescu V. I. ; El Haskouri J. ; Beltrán D. ; Amorós P. J. Catal. 2007, 251, 388.
doi: 10.1016/j.jcat.2007.08.001
171 Schager F. ; Bonrath W. J. Catal. 1999, 182, 282.
doi: 10.1006/jcat.1998.2351
172 Wang H. ; Xu B. Q. Appl. Catal. A 2004, 275, 247.
doi: 10.1016/j.apcata.2004.07.038
173 Kozhevnikov I. V. ; Kulikov S. M. ; Chukaeva N. G. ; Kirsanov A. T. ; Letunova A. B. ; Blinova V. I. React. Kinet. Catal. L. 1992, 47, 59.
doi: 10.1007/bf02063560
174 Xing H. B. ; Wang T. ; Zhou Z. H. ; Dai Y. Y. Synthetic. Commun. 2006, 36, 2433.
doi: 10.1080/00397910600781166
175 Laha S. C. ; Venkatesan C. ; Sakthivel A. ; Komura K. ; Kim T. H. ; Cho S. J. ; Huang S. J. ; Wu P. H. ; Liu S. B. ; Sasaki Y. ; et al Micropor. Mesopor. Mater. 2010, 133, 82.
doi: 10.1016/j.micromeso.2010.04.018
176 Hirose N. ; Inoue H. ; Matsunami T. ; Yoshimura T. ; Morita K. ; Horikawa Y. ; Iwata N. ; Hayashi K. ; Seki C. ; Minami N. ; et al Process for the preparation of alpha-tocopherol. CN 112, 3278A 1996.
177 Kokubo Y. ; Hasegawa A. ; Kuwata S. ; Ishihara K. ; Yamamoto H. ; Ikariya T. Adv. Synth. Catal. 2005, 347, 220.
doi: 10.1002/adsc.200404312
178 Xing H. B. ; Wang T. ; Dai Y. Y. J. Supercrit. Fluid. 2009, 49, 52.
doi: 10.1016/j.supflu.2008.12.003
[1] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[2] 王恒伟,路军岭. 原子层沉积:一种多相催化剂“自下而上”气相制备新策略[J]. 物理化学学报, 2018, 34(12): 1334-1357.
[3] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[4] 廖珮懿,张辰,张丽君,杨彦章,钟良枢,郭晓亚,王慧,孙予罕. Cu含量对以水滑石为前驱体的Cu/Co/Mn/Al催化剂高级醇合成性能的影响[J]. 物理化学学报, 2017, 33(8): 1672-1680.
[5] 胡凌霄,王莲,王飞,张长斌,贺泓. Pd/γ-Al2O3催化剂催化氧化邻-二甲苯[J]. 物理化学学报, 2017, 33(8): 1681-1688.
[6] 周扬,程庆庆,黄庆红,邹志青,严六明,杨辉. 高分散钴氮共掺杂碳纳米纤维氧还原催化剂[J]. 物理化学学报, 2017, 33(7): 1429-1435.
[7] 翟萧,丁轶. 纳米多孔金属电催化剂在氧还原反应中的应用[J]. 物理化学学报, 2017, 33(7): 1366-1378.
[8] 黄于芬,张海龙,杨铮铮,赵明,黄木兰,梁艳丽,王健礼,陈耀强. CeO2的添加对柴油车氧化催化剂Pt/SiO2-Al2O3的NO氧化性能提高的影响[J]. 物理化学学报, 2017, 33(6): 1242-1252.
[9] 孙帅其,易颜辉,王丽,张家良,郭洪臣. 负载型双金属催化剂的制备及其等离子体催化氨分解制氢性能[J]. 物理化学学报, 2017, 33(6): 1123-1129.
[10] 胡益浩,宋通洋,王月娟,胡庚申,谢冠群,罗孟飞. Zn/SiO2气相催化裂解1,1,2-三氯乙烷脱HCl:酸性与失活[J]. 物理化学学报, 2017, 33(5): 1017-1026.
[11] 凌崇益,王金兰. 基于类石墨烯二维材料的析氢反应电催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 869-885.
[12] 王俊,魏子栋. 非贵金属氧还原催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 886-902.
[13] 高晓平,郭章龙,周亚男,敬方梨,储伟. 锐钛矿型TiO2担载的Pd催化剂用于乙炔选择加氢的催化性能及其表征[J]. 物理化学学报, 2017, 33(3): 602-610.
[14] 吕洋,宋玉江,刘会园,李焕巧. 内核含Pd的Pt基核壳结构电催化剂[J]. 物理化学学报, 2017, 33(2): 283-294.
[15] 李申慧,李静,郑安民,邓风. 固体酸催化剂结构与催化反应机理的核磁共振研究[J]. 物理化学学报, 2017, 33(2): 270-282.