Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (8): 896-903    DOI: 10.3866/PKU.WHXB201711271
所属专题: 绿色化学
论文     
阴离子功能化大孔树脂用于二氧化硫的多位点高效捕集
贺熙1,吕逍雨1,樊喜1,林文俊1,李浩然1,2,王从敏1,*()
1 浙江大学化学系,浙大-新和成联合研发中心,杭州 310027
2 浙江大学化学工程与生物工程学院,杭州 310027
Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption
Xi HE1,Xiaoyu LÜ1,Xi FAN1,Wenjun LIN1,Haoran LI1,2,Congmin WANG1,*()
1 ZJU-NHU United R & D Center, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
2 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
 全文: PDF(931 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

提出了一种针对大孔树脂阴离子功能化的新策略并合成了一系列阴离子功能化大孔树脂[IRA-900][An],在20 ℃和101.3 kPa的吸附条件下实现了对SO2的超高吸附容量(> 10 mmol·g-1)。和常规唑基阴离子功能化大孔树脂相比,聚咪唑基硼酸阴离子功能化的大孔树脂[IRA-900][B(Im)4]在低压条件下仍然展现了卓越的SO2捕集能力。吸附实验发现,[IRA-900][B(Im)4]在10.13 kPa和20 ℃的低压环境中能够保持10.62 mmol·g-1的超高SO2吸附量。通过红外谱学研究以及密度泛函理论(DFT)计算来进行吸附机理探究,发现聚唑基硼酸阴离子[B(Im)4]具有独特的正四面体构型,从而打破了阴离子上N负位点之间的电子流动和共轭效应。在[IRA-900][B(Im)4]捕集SO2过程中,阴离子连续和SO2分子发生化学相互作用时,吸附焓变无明显下降。因此,一个[B(Im)4]阴离子能够提供四个有效的作用位点和SO2发生化学吸附作用,从而在低压条件下,[IRA-900][B(Im)4]仍然实现了超高的SO2捕集能力。此外,我们对阴离子功能化大孔树脂[IRA-900][B(Im)4]在低压条件下对SO2吸附的循环稳定性做了探究。结果发现,在20 ℃和10.13 kPa的吸附环境中以及70 ℃的脱附条件下,[IRA-900][B(Im)4]展现了良好的循环稳定性,具有极大的工业应用价值。最后,这种阴离子功能化的策略以及多位点捕集方法对实现烟气环境中SO2的高效捕集开拓了新的思路。

关键词: 阴离子功能化大孔树脂聚咪唑基硼酸阴离子多位点均一型SO2捕集    
Abstract:

The anion-functionalization strategy has been proposed and applied for the synthesis of macro-porous resins [IRA-900][An], thus realizing anultra-high SO2 adsorption capacity (>10 mmol·g-1) at 101.3 kPa and 20 ℃. Compared with the normal azole-based anion-functionalized resins, the poly(imidazolyl)borate anion-functionalized resin [IRA-900][B(Im)4] exhibited an outstanding adsorption capacity at low SO2 partial pressures (10.62 mmol·g-1 at 20 ℃ and 10.13 kPa). From the results of the IR spectrum investigation and DFT calculations, the multiple-site adsorption mechanism was verified. On account of the unique tetrahedral configuration of [B(im)4], the conjugation and electronic communication between the electronegative nitrogen atoms were disrupted, making them behave as local reactive sites. Therefore, at least four electronegative nitrogen atoms could be provided by one [B(im)4] to react with SO2 without evident adsorption enthalpy deterioration (from -50.6 kJ·mol-1 to -37.2 kJ·mol-1) during the continuous SO2 capture; this was responsible for the ultra-high SO2 adsorption capacity achieved by [IRA-900][B(Im)4] at low partial pressures. Moreover, the thermal stability and reversibility of [IRA-900][B(Im)4] for SO2 capture and desorption were investigated. Six cycles where the adsorption was carried out at 20 ℃ and 10.13 kPa and the regeneration was performed at 70 ℃ demonstrated the adequate reversibility of [IRA-900][B(Im)4] for SO2 capture, showing the resin's great potential for industrial desulfurization. Thus, the anion-functionalization strategy and multiple-site adsorption behavior provide new perspectives to realize effective SO2 capture from flue gas.

Key words: Anion functionalized    Macro-porous resins    Poly(imidazolyl)borate anion    Multiple-site    SO2 capture
收稿日期: 2017-10-27 出版日期: 2017-11-27
中图分类号:  O641  
基金资助: 国家重点基础研究发展规划项目(973)(2015CB251401);国家自然科学基金项目(21176205);国家自然科学基金项目(21322602);浙江省自然科学基金项目(LZ17B060001);中央高校基本科研业务费专项资金资助
通讯作者: 王从敏     E-mail: chewcm@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贺熙
吕逍雨
樊喜
林文俊
李浩然
王从敏

引用本文:

贺熙,吕逍雨,樊喜,林文俊,李浩然,王从敏. 阴离子功能化大孔树脂用于二氧化硫的多位点高效捕集[J]. 物理化学学报, 2018, 34(8): 896-903, 10.3866/PKU.WHXB201711271

Xi HE,Xiaoyu LÜ,Xi FAN,Wenjun LIN,Haoran LI,Congmin WANG. Ultra-High SO2 Capture by Anion-Functionalized Resins through Multiple-Site Adsorption. Acta Phys. -Chim. Sin., 2018, 34(8): 896-903, 10.3866/PKU.WHXB201711271.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201711271        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I8/896

Scheme 1  Structures of the anion functionalized macro-porous resins for SO2 capture
Fig 1  Infrared spectrum of each anion functionalized resin using the ATR method blue: [IRA-900][B(Im)4]; green: [IRA-900][Triz]; red: [IRA-900][Tetz]; grey: [IRA-900][Cl]. Color online
Material Surface area/(m2·g-1)a Pore size/nmb Pore volume/(cm3·g-1)b N content/%
[1RA-900][C1] 20 43 0.26 5.35
[IRA-900] [B(Im)4] 13 38 0.21 23.43
[IRA-900] [Triz] 19 43 0.22 19.95
[IRA-900] [Tetz] 11 46 0.21 25.89
Table 1  Structural features and nitrogen content for the original resin [IRA-900][Cl] and anion functionalized resins [IRA-900][An]
Material Adsorption capacity/(mmol·g?1) a Anion sites/(mmol·g?1) b Molar ratio d
101.3 kPa, 20 ℃ 10.13 kPa, 20 ℃
[IRA-900] [B(Im)4] 11.18 10.62/8.40 c 1.86 5.71
[IRA-900][Triz] 10.97 5.15 3.56 1.45
[IRA-900] [Tetz] 10.13 5.06 3.70 1.37
[IRA-900] [Cl] 10.75 4.35 3.82 1.14
Table 2  SO2 adsorption capacity of the anion functionalized resin
Fig 2  SO2 adsorption curves by anion functionalized resins at 10.13 kPa and 20 ℃ blue:[IRA-900][B(Im)4]; green: [IRA-900][Triz]; red:[IRA-900][Tetz]; black: [IRA-900][Cl]. Color online
Fig 3  Infrared spectrum of [IRA-900][B(Im)4] during the SO2 capture process (grey) fresh [IRA-900][B(im)4] without SO2; (red) [IRA-900][B(Im)4] with SO2 adsorbed at 10.13 kPa and 20 ℃; (blue) [IRA-900][B(Im)4] regenerated at 70 ℃ with N2 atmosphere for 30 min
Fig 4  Optimized structures of simplified [B(Im)4]-SO2 complexes at the B3LYP/6-31++G(d, p) level adsorption enthalpies for SO2: (a) [B(Im)4]-SO2, ΔH = -50.6 kJ·mol-1; (b) [B(Im)4]-2SO2, ΔH = -45.3 kJ·mol-1; (c)[B(Im)4]-3SO2, ΔH = -42.7 kJ·mol-1; (d) [B(Im)4]-4SO2, ΔH = -37.2 kJ·mol-1
Fig 5  SO2 adsorption/desorption by [IRA-900][B(Im)4] for 6 cycles SO2 adsorption was carried out at 10.13 kPa and 20 ℃, desorption was performed at 70 ℃ under N2 atmosphere
1 Ilutiu-Varvara D. A. ; Radulescu D. Stud. Univ. Babes-Bol. Chem. 2013, 58 (2), 143.
2 Wang X. L. ; Deng J. P. Aer. Adv. Eng. Res. 2015, 39, 1207.
doi: 10.2991/icadme-15.2015.222
3 Lehmann J. ; Solomon D. ; Zhao F. J. ; McGrath S. P. Environ. Sci. Technol. 2008, 42 (10), 3550.
doi: 10.1021/es702315g
4 Saastamoinen J. J. Ind. Eng. Chem. Res. 2007, 46 (22), 7308.
doi: 10.1021/ie070567p
5 Manovic V. ; Anthony E. J. Fuel 2008, 87 (8-9), 1564.
doi: 10.1016/j.fuel.2007.08.022
6 Basinas P. ; Grammelis P. ; Grace J. R. ; Lim C. J. ; Skodras G. ; Sakellaropoulos G. P. Green Energy Technol. 2010, 329
doi: 10.1007/978-1-4419-1017-2_20
7 Wu Y. ; Chen X. P. ; Radosz M. ; Fan M. H. ; Dong W. ; Zhang Z. L. ; Yang Z. Fuel 2014, 125, 50.
doi: 10.1016/j.fuel.2014.02.014
8 Dong R. F. ; Lu H. F. ; Yu Y. S. ; Zhang Z. X. Appl. Energ. 2012, 97, 185.
doi: 10.1016/j.apenergy.2011.12.039
9 Woodis T. C. ; Cummings J. M. ; Hunter G. B. Environ. Sci. Technol. 1973, 7 (9), 827.
doi: 10.1021/es60081a001
10 Srivastava R. K. ; Jozewicz W. ; Singer C. Environ. Prog. 2001, 20 (4), 219.
doi: 10.1002/ep.670200410
11 Yang D. Z. ; Hou M. Q. ; Ning H. ; Zhang J. L. ; Ma J. ; Han B. X. Phys. Chem. Chem. Phys. 2013, 15 (41), 18123.
doi: 10.1002/cssc.201300224
12 Heldebrant D. J. ; Koech P. K. ; Yonker C. R. Energ. Environ. Sci. 2010, 3 (1), 111.
doi: 10.1039/b916550a
13 Deng R. P. ; Jia L. S. ; Song Q. Q. ; Su S. ; Tian Z. B. J. Hazard. Mater. 2012, 229, 398.
doi: 10.1016/j.jhazmat.2012.06.020
14 Gurkan B. E. ; de la Fuente J. C. ; Mindrup E. M. ; Ficke L. E. ; Goodrich B. F. ; Price E. A. ; Schneider W. F. ; Brennecke J. F. J. Am. Chem. Soc. 2010, 132 (7), 2116.
doi: 10.1021/ja909305t
15 Srivastava R. K. ; Jozewicz W. J. Air Waste. Manage. 2001, 51 (12), 1676.
doi: 10.1080/10473289.2001.10464387
16 Slater A. G. ; Cooper A. I. Science 2015, 348, 6238.
doi: 10.1126/science.aaa8075
17 Thomas A. Angew. Chem. Int. Edit. 2010, 49 (45), 8328.
doi: 10.1002/anie.201000167
18 Drage T. C. ; Snape C. E. ; Stevens L. A. ; Wood J. ; Wang J. W. ; Cooper A. I. ; Dawson R. ; Guo X. ; Satterley C. ; Irons R. J. Mater. Chem. 2012, 22 (7), 2815.
doi: 10.1039/c2jm12592g
19 Dawson R. ; Cooper A. I. ; Adams D. J. Polym. Int. 2013, 62 (3), 345.
doi: 10.1002/pi.4407
20 Liao P. Q. ; Chen H. Y. ; Zhou D. D. ; Liu S. Y. ; He C. T. ; Rui Z. B. ; Ji H. B. ; Zhang J. P. ; Chen X. M. Energ. Environ. Sci. 2015, 8 (3), 1011.
doi: 10.1039/c4ee02717e
21 Cui X. L. ; Yang Q. W. ; Yang L. F. ; Krishna R. ; Zhang Z. G. ; Bao Z. B. ; Wu H. ; Ren Q. L. ; Zhou W. ; Chen B. L. ; et al Adv. Mater. 2017, 29 (28), 1606929.
doi: 10.1002/adma.201606929
22 Yang S. H. ; Sun J. L. ; Ramirez-Cuesta A. J. ; Callear S. K. ; David W. I. F. ; Anderson D. P. ; Newby R. ; Blake A. J. ; Parker J. E. ; Tang C. C. ; et al Nat. Chem. 2012, 4 (11), 887.
doi: 10.1038/NCHEM.1457
23 Savage M. ; Cheng Y. G. ; Easun T. L. ; Eyley J. E. ; Argent S. P. ; Warren M. R. ; Lewis W. ; Murray C. ; Tang C. C. ; Frogley M. D. ; et al Adv. Mater. 2016, 28 (39), 8705.
doi: 10.1002/adma.201602338
24 Wu W. Z. ; Han B. X. ; Gao H. X. ; Liu Z. M. ; Jiang T. ; Huang J. Angew. Chem. Int. Edit. 2004, 43 (18), 2415.
doi: 10.1002/anie.200353437
25 Zhang S. J. ; Sun N. ; He X. Z. ; Lu X. M. ; Zhang X. P. J. Phys. Chem. Ref. Data 2006, 35 (4), 1475.
doi: 10.1063/1.2204959
26 Lin H. ; Bai P. ; Guo X. H. Asian J. Chem. 2014, 26 (9), 2501.
doi: 10.14233/ajchem.2014.15800
27 Yang D. Z. ; Hou M. Q. ; Ning H. ; Ma J. ; Kang X. C. ; Zhang J. L. ; Han B. X. ChemSusChem 2013, 6 (7), 1191.
doi: 10.1002/cssc.201300224
28 Mondal A. ; Balasubramanian S. J. Phys. Chem. B. 2016, 120 (19), 4457.
doi: 10.1021/acs.jpcb.6b02553
29 Zeng S. J. ; Gao H. S. ; Zhang X. C. ; Dong H. F. ; Zhang X. P. ; Zhang S. J. Chem. Eng. J. 2014, 251, 248.
doi: 10.1016/j.cej.2014.04.040
30 Cui G. K. ; Wang C. M. ; Zheng J. J. ; Guo Y. ; Luo X. Y. ; Li H. R. Chem. Commun. 2012, 48 (20), 2633.
doi: 10.1039/c2cc16457d
31 Chen K. H. ; Lin W. J. ; Yu X. N. ; Luo X. Y. ; Ding F. ; He X. ; Li H. R. ; Wang C. M. AIChE J. 2015, 61 (6), 2028.
doi: 10.1002/aic.14793
32 Wang C. M. ; Cui G. K. ; Luo X. Y. ; Xu Y. J. ; Li H. R. ; Dai S. J. Am. Chem. Soc. 2011, 133 (31), 11916.
doi: 10.1021/ja204808h
33 Cui G. K. ; Lin W. J. ; Ding F. ; Luo X. Y. ; He X. ; Li H. R. ; Wang C. M. Green Chem. 2014, 16 (3), 1211.
doi: 10.1039/c3gc41458b
34 Tang H. R. ; Lu D. M. ChemPhysChem 2015, 16 (13), 2854.
doi: 10.1002/cphc.201500369
35 He X. ; Mei K. ; Dao R. N. ; Cai J. S. ; Lin W. J. ; Kong X. Q. ; Wang C. M. AIChE J. 2017, 63 (7), 3008.
doi: 10.1002/aic.15647
36 Srinivasan A. ; Grutzeck M. W. Environ. Sci. Technol. 1999, 33 (9), 1464.
doi: 10.1021/es9802091
37 Alesi W. R. ; Kitchin J. R. Ind. Eng. Chem. Res. 2012, 51 (19), 6907.
doi: 10.1021/ie300452c
38 Lee H. J. ; Lee K. I. ; Kim M. ; Suh Y. W. ; Kim H. S. ; Lee H. ACS Sustain. Chem. Eng. 2016, 4 (4), 2012.
doi: 10.1021/acssuschemeng.5b01325
39 Trofimenko S. J. Am. Chem. Soc. 1967, 89 (13), 3170.
doi: 10.1021/ja00989a017
40 Becke A. D. Phys. Rev. A 1988, 38 (6), 3098.
doi: 10.1103/PhysRevA.38.3098
41 Lee C. T. ; Yang W. T. ; Parr R. G. Phys. Rev. B 1988, 37 (2), 785.
doi: 10.1103/PhysRevB.37.785
42 Becke A. D. J. Chem. Phys. 1993, 98 (7), 5648.
doi: 10.1063/1.464913
43 Firaha D. S. ; Holloczki O. ; Kirchner B. Angew. Chem. Int. Edit. 2015, 54 (27), 7805.
doi: 10.1002/anie.201502296
44 Wang C. M. ; Luo X. Y. ; Luo H. M. ; Jiang D. E. ; Li H. R. ; Dai S. Angew. Chem. Int. Edit. 2011, 50 (21), 4918.
doi: 10.1002/anie.201008151
45 Goeppert A. ; Meth S. ; Olah G. A. ; Prakash S. G. K. Energy Environ. Sci. 2010, 3, 1949.
doi: 10.1039/C0EE00136H
46 Qi G. G. ; Wang Y. B. ; Estevez L. ; Duan X. N. ; Anako N. ; Park A. H. A. ; Li W. ; Jones C. W. ; Giannelis E. P. Energy Environ. Sci. 2011, 4 (2), 444.
doi: 10.1039/c0ee00213e
47 Xiang S. C. ; Zhang Z. J. ; Zhao C. G. ; Hong K. L. ; Zhao X. B. ; Ding D. R. ; Xie M. H. ; Wu C. D. ; Das M. C. ; Gill R. ; et al Nat. Commun. 2011, 2 (1), 1.
doi: 10.1038/ncomms1206
48 Liao P. Q. ; Zhang W. X. ; Zhang J. P. ; Chen X. M. Nat. Commun. 2015, 6, 8697.
doi: 10.1038/ncomms969
`s\vl VE`s\vl V
[1] 王琴, 薛珉敏, 张助华. 硼烯化学合成进展与展望[J]. 物理化学学报, 0, (): 0-0.
[2] 于泽,李晓宏,李运超,叶明富. 钾离子浓度依赖的铅离子稳定G-四链体构型转化[J]. 物理化学学报, 2018, 34(11): 1293-1298.
[3] 柳平英,刘春艳,刘倩,马晶. 含偶氮苯主-客体复合物的光致异构化反应对结合能与几何构象的影响[J]. 物理化学学报, 2018, 34(10): 1171-1178.
[4] 赵亚松,张丽娟,齐健,金泉,林凯峰,王丹. 石墨二炔及其电子转移增强特性[J]. 物理化学学报, 2018, 34(9): 1048-1060.
[5] 陈文琼,关永吉,张晓萍,邓友全. 分子动力学模拟研究外电场对咪唑类离子液体振动谱的影响[J]. 物理化学学报, 2018, 34(8): 912-919.
[6] 蒋东梅,薄乐,朱挺,陶俊彬,杨小平. 锌-稀土矩形纳米簇的构筑及近红外发光性能[J]. 物理化学学报, 2018, 34(7): 812-817.
[7] 沈艳芳,程龙玖. 八电子Pd4四面体团簇的电子结构稳定性分析[J]. 物理化学学报, 2018, 34(7): 830-836.
[8] 郑有坤,姜晖,王雪梅. 多策略可控合成原子精度合金纳米团簇[J]. 物理化学学报, 2018, 34(7): 740-754.
[9] 郭肖红,周影,石利红,张彦,张彩红,董川,张国梅,双少敏. 基于乙醇和铝离子聚集诱导的铜纳米团簇[J]. 物理化学学报, 2018, 34(7): 818-824.
[10] 任秀清,林欣章,付雪梅,刘超,闫景辉,黄家辉. 合成高产率的Au21(SR)15纳米簇[J]. 物理化学学报, 2018, 34(7): 825-829.
[11] NARAYANAM Nagaraju,CHINTAKRINDA Kalpana,方伟慧,张磊,张健. 具有精准结构Zr-O及Zr/Ti-O纳米团簇的深共熔溶剂热合成[J]. 物理化学学报, 2018, 34(7): 781-785.
[12] 谢安,王芝,吴荞宇,程丽萍,骆耿耿,孙頔. 夹心三明治结构的二十五核银硫簇合物[Ag25(SC6H4Pri)18 (dppp)6](CF3SO3)7·CH3CN:结构表征及光学性能[J]. 物理化学学报, 2018, 34(7): 776-780.
[13] 许文武,高嶷. 巯基保护的中空金纳米球[J]. 物理化学学报, 2018, 34(7): 770-775.
[14] 孙国栋,康熙,金山,李小武,胡大乔,汪恕欣,朱满洲. 银镍合金团簇Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-二甲基苯硫酚)的合成及其结构表征[J]. 物理化学学报, 2018, 34(7): 799-804.
[15] 周洋,李志敏,郑凯,李杲. 精确控制合成Au36(SR)24金原子簇(SR = SPh, SC6H4CH3, SCH(CH3)Ph, SC10H7)[J]. 物理化学学报, 2018, 34(7): 786-791.