Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (2): 230-240    DOI: 10.3866/PKU.WHXB201711281
论文     
咪唑修饰萘酰亚胺与DNA的作用及其细胞毒性
高云燕,蔡温姣,欧植泽*(),马拖拖,倚娜,李志远
DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides
Yunyan GAO,Wenjiao CAI,Zhize OU*(),Tuotuo MA,Na YI,Zhiyuan LI
 全文: PDF(3697 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

设计合成了咪唑及其烷基化咪唑阳离子基团修饰的萘酰亚胺衍生物。利用紫外-可见吸收光谱、荧光光谱、圆二色谱和荧光共振能量转移等方法研究了它们与小牛胸腺DNA (CT DNA)和G-四链体DNA的相互作用。这些化合物对端粒DNA序列的G-四链体有很高的结合能力(Kα > 4 × 106 L·mol-1),并能够稳定G-四链体。DNA粘度实验结果表明萘酰亚胺衍生物与CT DNA通过插入作用结合。Autodock分子对接模拟结果表明这些化合物通过疏水作用、静电作用或氢键等方式与人体端粒G-四链体的loop和沟槽部分结合。咪唑阳离子基团修饰的萘酰亚胺衍生物4a–c能够定位于细胞核,对肺癌细胞的细胞毒性要高于咪唑基团修饰的萘酰亚胺衍生物3。化合物4a4b对肺癌细胞A549的细胞毒性明显高于正常人胚肺成纤维细胞MRC-5,表现出良好的抗癌活性。

关键词: 萘酰亚胺G-四链体抗癌药物咪唑阳离子细胞毒性    
Abstract:

The rational design of naphthalimide derivatives, which can target specific DNA sequences and secondary structural DNA, is important for developing potential anticancer drugs. In this work, the naphthalimide-imidazole conjugate (3) and its alkylated derivatives (4ac) were synthesized, and characterized by 1H NMR, 13C NMR, and mass spectrometry (MS). The interactions of these compounds with calf thymus DNA (CT DNA) and G-quadruplex DNA were investigated by UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, and fluorescence resonance energy transfer (FRET). The studies revealed that the naphthalimides with imidazolium displayed higher affinity towards CT DNA than those with the imidazole moiety, suggesting that the electrostatic interaction plays an important role in the interactions between the naphthalimide and the DNA duplex. All of the obtained naphthalimide derivatives possessed high affinity (Ka > 4 × 106 L·mol-1) towards the telomeric G-quadruplex, and exhibited more than 30-fold selectivity for the quadruplex versus CT DNA. The viscosity of CT DNA increased upon addition of the naphthalimides, suggesting that the latter could bind to the former via a classical intercalation mode. FRET results indicated that the compounds 3 and 4ac stabilized the structure of the telomeric G-quadruplex by increasing its melting temperature by 5.8, 10.7, 8.4, and 7.8 ℃, respectively. CD spectral results suggested that the telomeric G-quadruplex maintained a mixture of antiparallel and parallel conformation in the presence of the naphthalimide derivatives (3 and 4ac) in a buffer containing K+. The fluorescence intensity of the naphthalimide derivatives 3 and 4a, b with octylimidazolium was significantly enhanced upon interaction with the G-quadruplex, which could be attributed to the immersion of naphthalimide moieties in the hydrophobic region of the G-quadruplex. However, the fluorescence of compound 4c with hexadecylimidazolium increased only slightly upon addition of the G-quadruplex. Molecular docking studies indicated that the naphthalimide derivatives were associated with the loop and groove of the human telomeric G-quadruplex via hydrophobic interactions. A hydrogen bond was formed between the imidazole group in compound 3 and the guanine residue DG16. The phosphate group from the G-quadruplex backbone pointed to the imidazolium moiety of 4ac, suggesting that the electrostatic interactions also played an important role. Being fluorescent, the cellular localization of 3 and 4ac could be conveniently tracked by fluorescence imaging. The results showed that compounds 4ac, which contained the imidazolium moiety, were mainly localized in the nucleus after 4.0 h of incubation, while compound 3 with the imidazole moiety was partially localized in the nucleus. The enhancement of the nuclear localization of 4ac may be attributed to the positive charge in 4ac and their higher DNA affinity. Based on the MTT assay results, it was concluded that compounds 4ac displayed much stronger cytotoxic activity against breast cancer cells than 3. Furthermore, compounds 4a and 4b selectively inhibited the A549 cells over normal human lung fibroblast MRC-5 cells, with high anticancer activity. These results indicated that the G-quadruplex binding affinity and anticancer activity of naphthalimide could be modulated by conjugation with the imidazole moiety.

Key words: Naphthalimide    G-quadruplex    Anticancer drug    Imidazolium    Cytotoxicity
收稿日期: 2017-10-30 出版日期: 2017-11-28
中图分类号:  O642  
基金资助: 陕西省自然科学基金(2016JM2013);国家自然科学基金(21073143);西北工业大学研究生创意创新种子基金(Z2017208)
通讯作者: 欧植泽     E-mail: ouzhize@nwpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高云燕
蔡温姣
欧植泽
马拖拖
倚娜
李志远

引用本文:

高云燕,蔡温姣,欧植泽,马拖拖,倚娜,李志远. 咪唑修饰萘酰亚胺与DNA的作用及其细胞毒性[J]. 物理化学学报, 2019, 35(2): 230-240, 10.3866/PKU.WHXB201711281

Yunyan GAO,Wenjiao CAI,Zhize OU,Tuotuo MA,Na YI,Zhiyuan LI. DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides. Acta Phys. -Chim. Sin., 2019, 35(2): 230-240, 10.3866/PKU.WHXB201711281.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201711281        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I2/230

图1  含咪唑基团萘酰亚胺衍生物的合成路线
图2  (a) CT DNA和(b) Htelo G-四链体DNA对3 (40 μmol·L-1)吸收光谱的影响
Compound CT DNA Htelo DNA Selectivity a
Kα Red shift Kα Red shift
3 1.40 × 104 0 7.86 × 106 0 561
4a 5.31 × 104 0 4.27 × 106 0 80.2
4b 4.65 × 104 3 1.41 × 107 3 301
4c 1.24 × 105 10 9.22 × 106 4 74.4
表1  紫外-可见吸收光谱测定的萘酰亚胺衍生物与双链CT DNA和Htelo G-四链体的结合常数(Kα, L·mol?1)
图3  不同浓度的(a) CT DNA和(b) Htelo G-四链体DNA后,萘酰亚胺衍生物的荧光强度变化
Compound CT DNA a Htelo DNA b
3 2.99 10.0
4a 3.68 7.99
4b 3.59 9.90
4c 1.48 2.73
表2  双链CT DNA和Htelo G-四链体DNA对萘酰亚胺衍生物荧光强度的影响
图4  在含有0.1 mol·L?1 KCl的Tris-HCl (10 mmol·L?1,pH 7.4)缓冲溶液中不同浓度萘酰亚胺衍生物和EB对CT DNA (0.1 mmol·L?1)粘度的影响
图5  (a)含K+和(b)不含K+的Tris-HCl缓冲液中,加入化合物3,4a–c对Htelo G-四链体CD谱的影响
图6  化合物3,4a–c对FHtelo G-四链体熔解温度(Tm)的影响
图7  化合物3 (a,b),4a(c,d)和4c (e,f)与端粒G-四链体DNA (PDB ID: 1KF1)对接作用的模式图。红色虚线表示化合物与G-四链体间的氢键或静电作用
图8  A549细胞用化合物(a) 3,(d) 4b,及DAPI (b,e)孵育4.0 h后的荧光成像。(c)图(a)和(b)的叠加图;(f)图(d)和(e)的叠加图
Compound A549 MRC-5 MRC-5IC50/A549IC50
3 15.3 ± 1.30 19.8 ± 2.1 1.29
4a 2.64 ± 0.42 7.93 ± 0.21 3.04
4b 2.23 ± 0.39 7.06 ± 0.89 3.16
4c 3.34 ± 0.53 3.63 ± 0.58 1.08
Mitonafide 3.78 ± 0.31 1.81 ± 0.15 0.47
表3  萘酰亚胺衍生物对A549和MRC-5细胞的细胞毒性
1 Banerjee S. ; Veale E. B. ; Phelan C. M. ; Murphy S. A. ; Tocci G. M. ; Gillespie L. J. ; Frimannsson D. O. ; Kelly J. M.; Gunnlaugsson T. Chem. Soc. Rev. 2013, 42, 1601.
doi: 10.1039/C2CS35467E
2 Ratain M. J. ; Rosner G. ; Allen S. L. ; Costanza M. ; Van Echo D. A. ; Henderson I. C. ; Schilsky R. L. J. Clin. Oncol. 1995, 13, 741.
doi: 10.1200/JCO.1995.13.3.741
3 Ratain M. J. ; Mick R. ; Berezin F. ; Janisch L. ; Schilsky R. L. ; Williams S. F. ; Smiddy J. Clin. Pharmacol. Ther. 1991, 50, 573.
doi: 10.1038/clpt.1991.183
4 Kokosza K. ; Andrei G. ; Schols D. ; Snoeck R. ; Piotrowska D. G. Bioorg. Med. Chem 2015, 23, 3135.
doi: 10.1016/j.bmc.2015.04.079
5 Quintana-Espinoza P. ; Martin-Acosta P. ; Amesty A. ; Martin-Rodriguez P. ; Lorenzo-Castrillejo I. ; Fernandez-Perez L. ; Machin F. ; Estevez-Braun A. Bioorg. Med. Chem. 2017, 25, 1976.
doi: 10.1016/j.bmc.2017.02.024
6 Verma M. ; Luxami V. ; Paul K. RSC Adv. 2015, 5, 41803.
doi: 10.1039/C5RA00925A
7 Rong R.-X. ; Sun Q. ; Ma C.-L. ; Chen B. ; Wang W.-Y. ; Wang Z. A. ; Wang K. R. ; Cao Z. R. ; Li X. L. Med. Chem. Commun. 2016, 7, 679.
doi: 10.1039/C5MD00543D
8 Tian Z. ; Huang Y. ; Zhang Y. ; Song L. ; Qiao Y. ; Xu X. ; Wang C. J. Photochem. Photobiol. B Biol. 2016, 158, 1.
doi: 10.1016/j.jphotobiol.2016.01.017
9 Li F. ; Cui J. ; Guo L. ; Qian X. ; Ren W. ; Wang K. ; Liu F. Bioorg. Med. Chem. 2007, 15, 5114.
doi: 10.1016/j.bmc.2007.05.032
10 Qian X. ; Li Y. ; Xu Y. ; Liu Y. ; Qu B. Bioorg. Med. Chem. Lett. 2004, 14, 2665.
doi: 10.1016/j.bmcl.2004.02.059
11 Brana M. F. ; Cacho M. ; Garcia M. A. ; de Pascual-Teresa B. ; Ramos A. ; Dominguez M. T. ; Pozuelo J. M. ; Abradelo C. ; Rey-Stolle M. F. ; Yuste M. ; et al J. Med. Chem. 2004, 47, 1391.
doi: 10.1021/jm0308850
12 Hsiang Y. H. ; Liu L. F. Cancer Res. 1988, 48, 1722.
13 Hurley L. H. ; Boyd F. L. Trends Pharmacol. Sci. 1988, 9, 402.
doi: 10.1016/0165-6147(88)90067-3
14 Johnson C. A. ; Hudson G. A. ; Hardebeck L. K. E. ; Jolley E. A. ; Ren Y. ; Lewis M. ; Znosko B. M. Bioorg. Med. Chem. 2015, 23, 3586.
doi: 10.1016/j.bmc.2015.04.030
15 Tan S. ; Sun D. ; Lyu J. ; Sun X. ; Wu F. ; Li Q. ; Yang Y. ; Liu J. ; Wang X. ; Chen Z. ; et al Bioorg. Med. Chem. 2015, 23, 5672.
doi: 10.1016/j.bmc.2015.07.011
16 Sun Y. ; Li J. ; Zhao H. ; Tan L. J. Inorg. Biochem. 2016, 163, 88.
doi: 10.1016/j.jinorgbio.2016.04.028
17 Zhao S. S. ; Li L. L. ; Liu X. R. ; Ding Z. C. ; Yang Z. W. Acta Phys. -Chim. Sin. 2017, 33, 356.
doi: 10.3866/PKU.WHXB201610191
赵顺省; 李兰兰; 刘向荣; 丁作成; 杨再文. 物理化学学报, 2017, 33, 356.
doi: 10.3866/PKU.WHXB201610191
18 Mijatovic T. ; Mahieu T. ; Bruyere C. ; De Neve N. ; Dewelle J. ; Simon G. ; Dehoux M. J. M. ; van der Aar E. ; Haibe-Kains B. ; Bontempi G. ; et al Neoplasia 2008, 10, 573.
doi: 10.1593/neo.08290
19 Ji L. ; Yang S. ; Li S. ; Liu S. ; Tang S. ; Liu Z. ; Meng X. ; Yu S. Oncotarget 2017, 8, 37394.
doi: 10.18632/oncotarget.16962
20 Paeschkel K. ; Simonsson T. ; Postberg J. ; Rhodes D. ; Lipps H. J. Nat. Struct. Mol. Biol. 2005, 12, 847.
doi: 10.1038/nsmb982
21 Siddiqui-Jain A. ; Grand C. L. ; Bearss D. J. ; Hurley L. H. Proc. Nat. Acad. Sci. USA 2002, 99, 11593.
doi: 10.1073/pnas.182256799
22 Zhang J. ; Yu Q. ; Li Q. ; Yang L. ; Chen L. ; Zhou Y. ; Liu J. J. Inorg. Biochem. 2014, 134, 1.
doi: 10.1016/j.jinorgbio.2013.12.005
23 Mulholland K. ; Wu C. J. Chem. Inf. Model. 2016, 56, 2093.
doi: 10.1021/acs.jcim.6b00473
24 Drygin D. ; Siddiqui-Jain A. ; O'Brien S. ; Schwaebe M. ; Lin A. ; Bliesath J. ; Ho C. B. ; Proffitt C. ; Trent K. ; Whitten J. P. ; et al Cancer Res. 2009, 69, 7653.
doi: 10.1158/0008-5472.CAN-09-1304
25 Wang Y. F. ; Zhang X. ; Liu C. X. ; Zhou X. Acta Chim. Sin. 2017, 75, 692.
doi: 10.6023/A17040162
王雅芬; 张雄; 刘朝兴; 周翔. 化学学报, 2017, 75, 692.
doi: 10.6023/A17040162
26 Ou T. ; Lu Y. ; Tan J. ; Huang Z. ; Wong K. ; Gu L. ChemMedChem 2008, 3, 690.
doi: 10.1002/cmdc.200700300
27 Neidle S. J. Med. Chem. 2016, 59, 5987.
doi: 10.1021/acs.jmedchem.5b0183
28 Zheng X. ; Mu K. ; Tan C. ; Cao Q. ; Mao Z. Sci. China Chem. 2014, 44, 484.
doi: 10.1360/032013-340
郑小辉; 穆舸; 谭彩萍; 曹乾; 毛宗万. 中国科学:化学, 2014, 44, 484.
doi: 10.1360/032013-340
29 Sissi C. ; Lucatello L. ; Krapcho A. P. ; Maloney D. J. ; Boxer M. B. ; Camarasa M. V. ; Pezzoni G. ; Menta E. ; Palumbo M. Bioorg. Med. Chem. 2007, 15, 555.
doi: 10.1016/j.bmc.2006.09.029
30 Peduto A. ; Pagano B. ; Petronzi C. ; Massa A. ; Esposito V. ; Virgilio A. ; Paduano F. ; Trapasso F. ; Fiorito F. ; Florio S. ; et al Bioorg. Med. Chem. 2011, 19, 6419.
doi: 10.1016/j.bmc.2011.08.062
31 Ou Z. ; Qian Y. ; Gao Y. ; Wang Y. ; Yang G. ; Li Y. ; Jiang K. ; Wang X. RSC Adv. 2016, 6, 36923.
doi: 10.1039/c6ra01441k
32 Ou Z. ; Xu M. ; Gao Y. ; Hu R. ; Li Q. ; Cai W. ; Wang Z. ; Qian Y. ; Yang G. New J. Chem. 2017, 41, 9397.
doi: 10.1039/c7nj02366a
33 Sur S. ; Tiwari V. ; Sinha D. ; Kamran M. Z. ; Dubey K. D. ; Kumar G. S. ; Tandon V. ACS Omega 2017, 2, 966.
doi: 10.1021/acsomega.6b00523
34 Mancini J. ; Rousseau P. ; Castor K. J. ; Sleiman H. F. ; Autexier C. Biochimie 2016, 121, 287.
doi: 10.1016/j.biochi.2015.12.015
35 Hu M. H. ; Chen S. B. ; Wang B. ; Ou T. M. ; Gu L. Q. ; Tan J. H. ; Huang Z. S. Nucleic Acids Res. 2017, 45, 1606.
doi: 10.1093/nar/gkw1195
36 Huang J. ; Li G. ; Wu Z. ; Song Z. ; Zhou Y. ; Shuai L. ; Weng X. ; Zhou X. ; Yang G. Chem. Commun. 2009, 8, 902.
doi: 10.1039/b819789j
37 Czirok J. B. ; Bojtar M. ; Hessz D. ; Baranyai P. ; Drahos L. ; Kubinyi M. ; Bittera I. Sensor Actuat B-Chem. 2013, 182, 280.
doi: 10.1016/j.snb.2013.02.046
38 Wang D. ; Zhang X. ; He C. ; Duan C. Org. Biomol. Chem. 2010, 8, 2923.
doi: 10.1039/C004148C
39 Kim H. N. ; Lee E. H. ; Xu Z. ; Kim H. E. ; Lee H. S. ; Lee J. H. ; Yoon J. Biomaterial 2012, 33, 2282.
doi: 10.1016/j.biomaterials.2011.11.073
40 Street S. ; Chin D. ; Hollingworth G. ; Berry M. ; Morales J. C. ; Galan M. C. Chem. Eur. J. 2017, 23, 6953.
doi: 10.1002/chem.201700140
41 Chen J. S. ; Zhou P. W. ; Li G. Y. ; Chu T. S. ; He G. Z. J. Phys. Chem. B, 2013, 117, 5212.
doi: 10.1021/jp4017757
42 Romanucci V. ; Marchand A. ; Mendoza O. ; D'Alonzo D. ; Zarrelli A. ; Gabelica V. ; Fabio G. D. ACS Med. Chem. Lett. 2016, 7, 256.
doi: 10.1021/acsmedchemlett.5b00408
43 Fleming A. M. ; Ding Y. ; Alenko A. ; Burrows C. J. ACS Infect. Dis. 2016, 2, 674.
doi: 10.1021/acsinfecdis.6b00109
44 Xu X. L. ; Wang J. ; Yu C. L. ; Chen W. ; Li Y. C. ; Li Y. ; Zhang H. B. ; Yang X. D. Bioorg. Med. Chem. Lett. 2014, 24, 4926.
doi: 10.1016/j.bmcl.2014.09.045
45 Elshaarawy R. F. M. ; Kheiralla Z. H. ; Rushdy A. A. ; Janiak C. Inorg. Chim. Acta 2014, 421, 110.
doi: 10.1016/j.ica.2014.05.029
46 Ranke J. ; Cox M. ; Muller A. ; Schmidt C. ; Beyersmann D. Toxicol. Environ. Chem. 2006, 88, 273.
doi: 10.1080/02772240600589505
47 Luo X. ; Qian Y. Chin. J. Org. Chem. 2013, 33, 2423.
doi: 10.6023/cjoc201305034
罗晓燕; 钱鹰. 有机化学, 2013, 33, 2423.
doi: 10.6023/cjoc201305034
48 Manojkumar K. ; Charan K. T. P. ; Sivaramakrishna A. ; Jha P. C. ; Khedkar V. M. ; Siva R. ; Jayaraman G. ; Vijayakrishna K. Biomacromolecules 2015, 16, 894.
doi: 10.1021/bm5018029
49 Rao L. ; Dworkin J. D. ; Nell W. E. ; Bierbach U. J. Phys. Chem. B 2011, 115, 13701.
doi: 10.1021/jp207265s
50 Georgiades S. N. ; Karim N. H. A. ; Suntharalingam K. ; Vilar R. Angew. Chem. Int. Ed. 2010, 49, 4020.
doi: 10.1002/anie.200906363
51 Raju G. ; Vishwanath S. ; Prasad A. ; Patel B. K. ; Prabusankar G. J. Mol. Struct. 2016, 1107, 291.
doi: 10.1016/j.molstruc.2015.11.064
52 Zhou J. ; Chang A. ; Wang L. ; Liu Y. ; Liu X. ; Shangguan D. Org. Biomol. Chem. 2014, 12, 9207.
doi: 10.1039/C4OB01274G
53 Wang K. R. ; Qian F. ; Sun Q. ; Ma C. L. ; Rong R. X. ; Cao Z. R. ; Wang X. M. ; Li X. L. Chem. Biol. Drug Des. 2016, 87, 664.
doi: 10.1111/cbdd.12698
54 Ou Z. Z. ; Ju B. L. ; Gao Y. Y. ; Wang Z. C. ; Huang G. ; Qian Y. M. Acta Phys. -Chim. Sin. 2015, 31, 2386.
doi: 10.3866/PKU.WHXB201510l3
欧植泽; 句宝龙; 高云燕; 王子超; 黄干; 钱一梦. 物理化学学报, 2015, 31, 2386.
doi: 10.3866/PKU.WHXB201510l3
55 Loganathan R. ; Ramakrishnan S. ; Suresh E. ; Riyasdeen A. ; Akbarsha M. A. ; Palaniandavar M. Inorg. Chem. 2012, 51, 5512.
doi: 10.1021/ic2017177
56 Barton J. K. ; Goldberg J. M. ; Kumar C. V. ; Turro N. J. J. Am. Chem. Soc. 1986, 108, 2081.
doi: 10.1021/ja00268a057
57 Satyanarayana S. ; Dabrowiak J. C. ; Chaires J. B. Biochemistry 1993, 32, 2573.
doi: 10.1021/bi00061a015
58 Ou Z. ; Wang Y. ; Gao Y. ; Wang X. ; Qian Y. ; Li Y. ; Wang X. J. Inorg. Biochem. 2017, 166, 126.
doi: 10.1016/j.jinorgbio.2016.11.012
59 Sun D. ; Liu Y. ; Yu Q. ; Liu D. ; Zhou Y. ; Liu J. J. Inorg. Biochem. 2015, 150, 90.
doi: 10.1016/j.jinorgbio.2015.04.003
60 Xu X. ; Wang X. ; Li Y. ; Wang Y. ; Yang L. Nucleic Acids Res. 2012, 40, 7622.
doi: 10.1093/nar/gks517
61 Chenoweth D. M. ; Dervan P. B. Proc. Nat. Acad. Sci. USA 2009, 106, 13175.
doi: 10.1073/pnas.0906532106
62 Ghosh S. ; Mendoza O. ; Cubo L. ; Rosu F. ; Gabelica V. ; White A. J. P. ; Vilar R. Chem. Eur. J. 2014, 20, 4772.
doi: 10.1002/chem.201304905
[1] 周士超,冯贵涛,夏冬冬,李诚,武永刚,李韦伟. 萘酰亚胺-卟啉星型电子受体分子的构筑及其在非富勒烯太阳能电池中的应用[J]. 物理化学学报, 2018, 34(4): 344-347.
[2] 于泽,李晓宏,李运超,叶明富. 钾离子浓度依赖的铅离子稳定G-四链体构型转化[J]. 物理化学学报, 2018, 34(11): 1293-1298.
[3] 王漪,贾南方,齐胜利,田国峰,武德珍. 1, 8-萘酰亚胺衍生物的合成、表征及电存储性能[J]. 物理化学学报, 2017, 33(11): 2227-2236.
[4] 张宝红,胡国胜,朱登森,王文姬,巩格辉,杜为红. 过氧钒配合物抑制朊蛋白淀粉样肽的纤维形成[J]. 物理化学学报, 2016, 32(7): 1810-1818.
[5] 欧植泽,句宝龙,高云燕,王子超,黄干,钱一梦. 炔基配体对2, 6-双(N-乙基苯并咪唑)吡啶炔基铂(Ⅱ)配合物与G-四链体作用及抗癌活性的影响[J]. 物理化学学报, 2015, 31(12): 2386-2394.
[6] 崔俐丽, 周丹红, 李苗苗. 红移型Cu(II)离子比率荧光探针的光物理性质[J]. 物理化学学报, 2013, 29(04): 745-753.
[7] 申剑磊, 杨新国, 黄燎, 沈启立, 刘振辉, 张凤菊. 新型三嗪桥连的双1,8-萘酰亚胺衍生物的合成及其光物理行为[J]. 物理化学学报, 2012, 28(08): 1992-1999.
[8] 何湘伟, 龙海涛, 袁谷, 徐筱杰, 周亚伟. 电喷雾质谱法研究天然产物小分子识别人类端粒G-四链体及复合物的热稳定性[J]. 物理化学学报, 2010, 26(04): 1082-1086.
[9] 郭慈, 刘翠, 杨忠志. 鸟嘌呤四链体中Na+的移动[J]. 物理化学学报, 2010, 26(02): 478-486.
[10] 齐齐, 孙岳明, 哈涌泉. 1,8-萘酰亚胺类衍生物的结构及紫外-可见吸收光谱[J]. 物理化学学报, 2009, 25(06): 1143-1148.
[11] 沈新媛 吕洋 李慎敏. 人体端粒中(3+1)混合结构G-四链体稳定性的分子动力学模拟[J]. 物理化学学报, 2009, 25(04): 783-791.
[12] 蒲敏;陈标华;李会英;刘坤辉. DFT法研究离子液中EMIM+催化丁烯双键异构反应机理(II)[J]. 物理化学学报, 2005, 21(04): 383-387.
[13] 蒲敏;刘坤辉;李会英;陈标华. DFT法研究离子液中EMIM催化丁烯双键异构反应机理[J]. 物理化学学报, 2004, 20(08): 826-830.