Please wait a minute...
高云燕, 蔡温姣, 欧植泽, 马拖拖, 倚娜, 李志远
西北工业大学理学院应用化学系, 空间应用物理与化学教育部重点实验室, 西安 710072
DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides
GAO Yunyan, CAI Wenjiao, OU Zhize, MA Tuotuo, YI Na, LI Zhiyuan
The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an 710072, P. R. China
 全文: PDF(703 KB)   输出: BibTeX | EndNote (RIS) | Supporting Info

设计合成了咪唑及其烷基化咪唑阳离子基团修饰的萘酰亚胺衍生物。利用紫外-可见吸收光谱、荧光光谱、圆二色谱和荧光共振能量转移等方法研究了它们与小牛胸腺DNA(CT DNA)和G-四链体DNA的相互作用。这些化合物对端粒DNA序列的G-四链体有很高的结合能力(Kα > 4×106 L·mol-1),并能够稳定G-四链体。DNA粘度实验结果表明萘酰亚胺衍生物与CT DNA通过插入作用结合。Autodock分子对接模拟结果表明这些化合物通过疏水作用、静电作用或氢键等方式与人体端粒G-四链体的loop和沟槽部分结合。咪唑阳离子基团修饰的萘酰亚胺衍生物4a-c能够定位于细胞核,对肺癌细胞的细胞毒性要高于咪唑基团修饰的萘酰亚胺衍生物3。化合物4a4b对肺癌细胞A549的细胞毒性明显高于正常人胚肺成纤维细胞MRC-5,表现出良好的抗癌活性。

关键词: 萘酰亚胺G-四链体抗癌药物咪唑阳离子细胞毒性    

The rational design of naphthalimide derivatives, which can target specific DNA sequences and secondary structural DNA, is important for developing potential anticancer drugs. In this work, the naphthalimide-imidazole conjugate (3) and its alkylated derivatives (4a-c) were synthesized, and characterized by 1H NMR, 13C NMR, and mass spectrometry (MS). The interactions of these compounds with calf thymus DNA (CT DNA) and G-quadruplex DNA were investigated by UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, and fluorescence resonance energy transfer (FRET). The studies revealed that the naphthalimides with imidazolium displayed higher affinity towards CT DNA than those with the imidazole moiety, suggesting that the electrostatic interaction plays an important role in the interactions between the naphthalimide and the DNA duplex. All of the obtained naphthalimide derivatives possessed high affinity (Ka > 4×106 L·mol-1) towards the telomeric G-quadruplex, and exhibited more than 30-fold selectivity for the quadruplex versus CT DNA. The viscosity of CT DNA increased upon addition of the naphthalimides, suggesting that the latter could bind to the former via a classical intercalation mode. FRET results indicated that the compounds 3 and 4a-c stabilized the structure of the telomeric G-quadruplex by increasing its melting temperature by 5.8, 10.7, 8.4, and 7.8℃, respectively. CD spectral results suggested that the telomeric G-quadruplex maintained a mixture of antiparallel and parallel conformation in the presence of the naphthalimide derivatives (3 and 4a-c) in a buffer containing K+. The fluorescence intensity of the naphthalimide derivatives 3 and 4a, b with octylimidazolium was significantly enhanced upon interaction with the G-quadruplex, which could be attributed to the immersion of naphthalimide moieties in the hydrophobic region of the G-quadruplex. However, the fluorescence of compound 4c with hexadecylimidazolium increased only slightly upon addition of the G-quadruplex. Molecular docking studies indicated that the naphthalimide derivatives were associated with the loop and groove of the human telomeric G-quadruplex via hydrophobic interactions. A hydrogen bond was formed between the imidazole group in compound 3 and the guanine residue DG16. The phosphate group from the G-quadruplex backbone pointed to the imidazolium moiety of 4a-c, suggesting that the electrostatic interactions also played an important role. Being fluorescent, the cellular localization of 3 and 4a-c could be conveniently tracked by fluorescence imaging. The results showed that compounds 4a-c, which contained the imidazolium moiety, were mainly localized in the nucleus after 4.0 h of incubation, while compound 3 with the imidazole moiety was partially localized in the nucleus. The enhancement of the nuclear localization of 4a-c may be attributed to the positive charge in 4a-c and their higher DNA affinity. Based on the MTT assay results, it was concluded that compounds 4a-c displayed much stronger cytotoxic activity against breast cancer cells than 3. Furthermore, compounds 4a and 4b selectively inhibited the A549 cells over normal human lung fibroblast MRC-5 cells, with high anticancer activity. These results indicated that the G-quadruplex binding affinity and anticancer activity of naphthalimide could be modulated by conjugation with the imidazole moiety.

Key words: Naphthalimide    G-quadruplex    Anticancer drug    Imidazolium    Cytotoxicity
收稿日期: 2017-10-30 出版日期: 2017-11-28
中图分类号:  O642  


通讯作者: 欧植泽     E-mail:
E-mail Alert


高云燕, 蔡温姣, 欧植泽, 马拖拖, 倚娜, 李志远. 咪唑修饰萘酰亚胺与DNA的作用及其细胞毒性[J]. 物理化学学报, 10.3866/PKU.WHXB201711281.

GAO Yunyan, CAI Wenjiao, OU Zhize, MA Tuotuo, YI Na, LI Zhiyuan. DNA Interactions and Cytotoxicity of Imidazole-Modified Naphthalimides. Acta Physico-Chimica Sinca, 10.3866/PKU.WHXB201711281.


(1) Banerjee, S.; Veale, E. B.; Phelan, C. M.; Murphy, S. A.; Tocci, G. M.; Gillespie, L. J.; Frimannsson, D. O.; Kelly J. M.; Gunnlaugsson, T. Chem. Soc. Rev. 2013, 42, 1601. doi: 10.1039/C2CS35467E
(2) Ratain, M. J.; Rosner, G.; Allen, S. L.; Costanza, M.; Van Echo, D. A.; Henderson, I. C.; Schilsky, R. L. J. Clin. Oncol. 1995, 13, 741. doi:10.1200/JCO.1995.13.3.741
(3) Ratain, M. J.; Mick R.; Berezin, F.; Janisch, L.; Schilsky, R. L.; Williams, S. F.; Smiddy, J. Clin. Pharmacol. Ther. 1991, 50, 573. doi: 10.1038/clpt.1991.183
(4) Kokosza, K.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D.G. Bioorg. Med. Chem 2015, 23, 3135. doi: 10.1016/j.bmc.2015.04.079
(5) Quintana-Espinoza, P.; Martin-Acosta, P.; Amesty, A.; MartinRodriguez, P.; Lorenzo-Castrillejo, I.; Fernandez-Perez, L.; Machin, F.; Estevez-Braun, A. Bioorg. Med. Chem. 2017, 25, 1976. doi:10.1016/j.bmc.2017.02.024
(6) Verma, M.; Luxami, V.; Paul, K. RSC Adv. 2015, 5, 41803. doi: 10.1039/C5RA00925A
(7) Rong, R.-X.; Sun, Q.; Ma, C.-L.; Chen, B.; Wang, W.-Y.; Wang, Z. A.; Wang, K. R.; Cao, Z. R.; Li, X. L. Med. Chem. Commun. 2016, 7, 679. doi:10.1039/C5MD00543D
(8) Tian, Z.; Huang, Y.; Zhang, Y.; Song, L.; Qiao, Y.; Xu, X.; Wang, C. J. Photochem. Photobiol. B Biol. 2016, 158, 1. doi: 10.1016/j.jphotobiol.2016.01.017
(9) Li, F.; Cui, J.; Guo, L.; Qian, X.; Ren, W.; Wang, K.; Liu, F. Bioorg. Med. Chem. 2007, 15, 5114. doi: 10.1016/j.bmc.2007.05.032
(10) Qian, X.; Li, Y.; Xu, Y.; Liu, Y.; Qu, B. Bioorg. Med. Chem. Lett. 2004, 14, 2665. doi:10.1016/j.bmcl.2004.02.059
(11) Brana, M. F.; Cacho, M.; Garcia, M. A.; de Pascual-Teresa, B.; Ramos, A.; Dominguez, M. T.; Pozuelo, J. M.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M.; Banez-Coronel, M.; Lacal, J. C. J. Med. Chem. 2004, 47, 1391. doi:10.1021/jm0308850
(12) Hsiang, Y. H.; Liu, L. F. Cancer Res. 1988, 48, 1722.
(13) Hurley, L. H.; Boyd, F. L. Trends Pharmacol. Sci. 1988, 9, 402. doi: 10.1016/0165-6147(88)90067-3
(14) Johnson, C. A.; Hudson, G. A.; Hardebeck, L. K. E.; Jolley, E. A.; Ren, Y.; Lewis, M.; Znosko, B. M. Bioorg. Med. Chem. 2015, 23, 3586. doi:10.1016/j.bmc.2015.04.030
(15) Tan, S.; Sun, D.; Lyu, J.; Sun, X.; Wu, F.; Li, Q.; Yang, Y.; Liu, J.; Wang, X.; Chen, Z.; Li, H.; Qian, X.; Xu, Y. Bioorg. Med. Chem. 2015, 23, 5672. doi:10.1016/j.bmc.2015.07.011
(16) Sun, Y.; Li, J.; Zhao, H.; Tan, L. J. Inorg. Biochem. 2016, 163, 88. doi:10.1016/j.jinorgbio.2016.04.028
(17) Zhao, S. S.; Li L. L.; Liu X. R.; Ding Z. C.; Yang Z. W. Acta Phys. -Chim. Sin. 2017, 33, 356.[赵顺省, 李兰兰, 刘向荣, 丁作成, 杨再文. 物理化学学报, 2017, 33, 363]doi:10.3866/PKU.WHXB201610191
(18) Mijatovic, T.; Mahieu, T.; Bruyere, C.; De Neve, N.; Dewelle, J.; Simon, G.; Dehoux, M. J. M.; van der Aar, E.; Haibe-Kains, B.; Bontempi, G.; Decaestecker, C.; Van Quaquebeke, E.; Darro, F.; Kiss, R. Neoplasia 2008, 10, 573. doi:10.1593/neo.08290
(19) Ji, L.; Yang, S.; Li, S.; Liu, S.; Tang, S.; Liu, Z.; Meng, X.; Yu, S. Oncotarget 2017, 8, 37394. doi:10.18632/oncotarget.16962
(20) Paeschkel, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H.J. Nat. Struct. Mol. Biol. 2005, 12, 847. doi:10.1038/nsmb982
(21) Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Proc. Nat. Acad. Sci. U. S. A. 2002, 99, 11593. doi: 10.1073/pnas.182256799
(22) Zhang, J.; Yu, Q.; Li, Q.; Yang, L.; Chen, L.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2014, 134, 1. doi: 10.1016/j.jinorgbio.2013.12.005
(23) Mulholland, K.; Wu, C. J. Chem. Inf. Model. 2016, 56, 2093. doi: 10.1021/acs.jcim.6b00473
(24) Drygin, D.; Siddiqui-Jain, A.; O'Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C. B.; Proffitt, C.; Trent, K.; Whitten, J. P.; et al. Cancer Res. 2009, 69 , 7653. doi: 10.1158/0008-5472.CAN-09-1304
(25) Wang, Y.; Zhang, X.; Liu, C.; Zhou, X. Acta Chim. Sin. 2017, 75, 692.[王雅芬, 张雄, 刘朝兴, 周翔. 化学学报, 2017, 75, 692.]doi:10.6023/A17040162
(26) Ou, T.; Lu, Y.; Tan, J.; Huang, Z.; Wong, K.; Gu, L. ChemMedChem 2008, 3, 690. doi:10.1002/cmdc.200700300
(27) Neidle, S. J. Med. Chem. 2016, 59, 5987. doi: 10.1021/acs.jmedchem.5b0183
(28) Zheng, X.; Mu, K.; Tan, C.; Cao, Q.; Mao, Z. Sci. China Chem. 2014, 44, 484.[郑小辉, 穆舸, 谭彩萍, 曹乾, 毛宗万. 中国科学:化学, 2014, 44, 484.] doi:10.1360/032013-340
(29) Sissi, C.; Lucatello, L.; Krapcho, A. P.; Maloney, D. J.; Boxer, M. B.; Camarasa, M. V.; Pezzoni, G.; Menta, E.; Palumbo, M. Bioorg. Med. Chem. 2007, 15, 555. doi: 10.1016/j.bmc.2006.09.029
(30) Peduto, A.; Pagano, B.; Petronzi, C.; Massa, A.; Esposito, V.; Virgilio, A.; Paduano, F.; Trapasso, F.; Fiorito, F.; Florio, S.; et al. Bioorg. Med. Chem. 2011, 19, 6419. doi: 10.1016/j.bmc.2011.08.062
(31) Ou, Z.; Qian, Y.; Gao, Y.; Wang, Y.; Yang, G.; Li, Y.; Jiang, K.; Wang, X. RSC Adv. 2016, 6, 36923. doi:10.1039/c6ra01441k
(32) Ou, Z.; Xu, M.; Gao, Y.; Hu, R.; Li, Q.; Cai, W.; Wang, Z.; Qian, Y.; Yang, G. New J. Chem. 2017, 41, 9397. doi: 10.1039/c7nj02366a
(33) Sur, S.; Tiwari, V.; Sinha, D.; Kamran, M. Z.; Dubey, K. D.; Kumar, G. S.; Tandon, V. ACS Omega 2017, 2, 966. doi: 10.1021/acsomega.6b00523
(34) Mancini, J.; Rousseau, P.; Castor, K. J.; Sleiman, H. F.; Autexier, C. Biochimie 2016, 121, 287. doi:10.1016/j.biochi.2015.12.015
(35) Hu, M. H.; Chen, S. B.; Wang, B.; Ou, T. M.; Gu, L. Q.; Tan J. H.; Huang, Z. S. Nucleic Acids Res. 2017, 45, 1606. doi: 10.1093/nar/gkw1195
(36) Huang, J.; Li, G.; Wu, Z.; Song, Z.; Zhou, Y.; Shuai, L.; Weng, X.; Zhou, X.; Yang, G. Chem. Commun. 2009, No.8, 902. doi: 10.1039/b819789j
(37) Czirok, J. B.; Bojtar, M.; Hessz, D.; Baranyai, P.; Drahos, L.; Kubinyi, M.; Bittera, I. Sensor Actuat B-Chem. 2013, 182, 280. doi: 10.1016/j.snb.2013.02.046
(38) Wang, D.; Zhang, X.; He, C.; Duan, C. Org. Biomol. Chem. 2010, 8, 2923. doi:10.1039/C004148C
(39) Kim, H. N.; Lee, E. H.; Xu, Z.; Kim, H. E.; Lee, H. S.; Lee, J. H.; Yoon, J. Biomaterial 2012, 33, 2282. doi: 10.1016/j.biomaterials.2011.11.073
(40) Street, S.; Chin, D.; Hollingworth, G.; Berry, M.; Morales, J. C.; Galan, M. C. Chem. Eur. J. 2017, 23, 6953. doi: 10.1002/chem.201700140
(41) Chen, J. S.; Zhou, P. W.; Li, G. Y.; Chu, T. S.; He, G. Z. J. Phys. Chem. B, 2013, 117, 5212. doi:10.1021/jp4017757
(42) Romanucci, V.; Marchand, A.; Mendoza, O.; D'Alonzo, D.; Zarrelli, A.; Gabelica, V.; Fabio, G. D. ACS Med. Chem. Lett. 2016, 7, 256. doi:10.1021/acsmedchemlett.5b00408
(43) Fleming, A. M.; Ding, Y.; Alenko, A.; Burrows, C. J. ACS Infect. Dis. 2016, 2, 674. doi:10.1021/acsinfecdis.6b00109
(44) Xu, X. L.; Wang, J.; Yu, C. L.; Chen, W.; Li, Y. C.; Li, Y.; Zhang, H. B.; Yang, X. D. Bioorg. Med. Chem. Lett. 2014, 24, 4926. doi: 10.1016/j.bmcl.2014.09.045
(45) Elshaarawy, R. F. M.; Kheiralla, Z. H.; Rushdy, A. A.; Janiak, C. Inorg. Chim. Acta 2014, 421, 110. doi:10.1016/j.ica.2014.05.029
(46) Ranke, J.; Cox, M.; Muller, A.; Schmidt, C.; Beyersmann, D. Toxicol. Environ. Chem. 2006, 88, 273. doi: 10.1080/02772240600589505
(47) Luo, X.; Qian, Y. Chin. J. Org. Chem. 2013, 33, 2423.[罗晓燕, 钱鹰. 有机化学, 2013, 33, 2423.] doi:10.6023/cjoc201305034
(48) Manojkumar, K.; Charan, K. T. P.; Sivaramakrishna, A.; Jha, P. C.; Khedkar, V. M.; Siva, R.; Jayaraman, G.; Vijayakrishna, K. Biomacromolecules 2015, 16, 894. doi:10.1021/bm5018029
(49) Rao, L.; Dworkin, J. D.; Nell, W. E.; Bierbach, U. J. Phys. Chem. B 2011, 115, 13701. doi:10.1021/jp207265s
(50) Georgiades, S. N.; Karim, N. H. A.; Suntharalingam, K.; Vilar, R. Angew. Chem. Int. Ed. 2010, 49, 4020. doi: 10.1002/anie.200906363
(51) Raju, G.; Vishwanath, S.; Prasad, A.; Patel, B. K.; Prabusankar, G. J. Mol. Struct. 2016, 1107, 291. doi: 10.1016/j.molstruc.2015.11.064
(52) Zhou, J.; Chang, A.; Wang, L.; Liu, Y.; Liu, X.; Shangguan, D. Org. Biomol. Chem. 2014, 12, 9207. doi:10.1039/C4OB01274G
(53) Wang, K. R.; Qian, F.; Sun, Q.; Ma, C. L.; Rong, R. X.; Cao, Z. R., Wang, X. M.; Li, X. L. Chem. Biol. Drug Des. 2016, 87, 664. doi: 10.1111/cbdd.12698
(54) Ou, Z.; Ju, B.; Gao, Y.; Wang, Z.; Huang, G.; Qian, Y. Acta Phys. -Chim. Sin. 2015, 31, 2386.[欧植泽, 句宝龙, 高云燕, 王子超, 黄干, 钱一梦. 物理化学学报, 2015, 31, 2386.]doi:10.3866/PKU.WHXB201510l3
(55) Loganathan, R.; Ramakrishnan, S.; Suresh, E.; Riyasdeen, A.; Akbarsha, M. A.; Palaniandavar, M. Inorg. Chem. 2012, 51, 5512. doi:10.1021/ic2017177
(56) Barton, J. K.; Goldberg, J. M.; Kumar, C. V.; Turro, N. J. J. Am. Chem. Soc. 1986, 108, 2081. doi:10.1021/ja00268a057
(57) Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1993, 32, 2573. doi:10.1021/bi00061a015
(58) Ou, Z.; Wang, Y.; Gao, Y.; Wang, X.; Qian, Y.; Li, Y.; Wang, X. J. Inorg. Biochem. 2017, 166, 126. doi: 10.1016/j.jinorgbio.2016.11.012
(59) Sun, D.; Liu, Y.; Yu, Q.; Liu, D.; Zhou, Y.; Liu, J. J. Inorg. Biochem. 2015, 150, 90. doi:10.1016/j.jinorgbio.2015.04.003
(60) Xu, X.; Wang, X.; Li, Y.; Wang, Y.; Yang, L. Nucleic Acids Res. 2012, 40, 7622. doi:10.1093/nar/gks517
(61) Chenoweth, D. M.; Dervan, P. B. Proc. Nat. Acad. Sci. U. S. A. 2009, 106, 13175. doi:10.1073/pnas.0906532106
(62) Ghosh, S.; Mendoza, O.; Cubo, L.; Rosu, F.; Gabelica, V.; White, A. J. P.; Vilar, R. Chem. Eur. J. 2014, 20, 4772. doi: 10.1002/chem.201304905

[1] 周士超,冯贵涛,夏冬冬,李诚,武永刚,李韦伟. 萘酰亚胺-卟啉星型电子受体分子的构筑及其在非富勒烯太阳能电池中的应用[J]. 物理化学学报, 2018, 34(4): 344-347.
[2] 王漪, 贾南方, 齐胜利, 田国峰, 武德珍. 1,8-萘酰亚胺衍生物的合成、表征及电存储性能[J]. 物理化学学报, 2017, 33(11): 2227-2236.
[3] 张宝红, 胡国胜, 朱登森, 王文姬, 巩格辉, 杜为红. 过氧钒配合物抑制朊蛋白淀粉样肽的纤维形成[J]. 物理化学学报, 2016, 32(7): 1810-1818.
[4] 欧植泽, 句宝龙, 高云燕, 王子超, 黄干, 钱一梦. 炔基配体对2,6-双(N-乙基苯并咪唑)吡啶炔基铂(Ⅱ)配合物与G-四链体作用及抗癌活性的影响[J]. 物理化学学报, 2015, 31(12): 2386-2394.
[5] 崔俐丽, 周丹红, 李苗苗. 红移型Cu(II)离子比率荧光探针的光物理性质[J]. 物理化学学报, 2013, 29(04): 745-753.
[6] 申剑磊, 杨新国, 黄燎, 沈启立, 刘振辉, 张凤菊. 新型三嗪桥连的双1,8-萘酰亚胺衍生物的合成及其光物理行为[J]. 物理化学学报, 2012, 28(08): 1992-1999.
[7] 何湘伟, 龙海涛, 袁谷, 徐筱杰, 周亚伟. 电喷雾质谱法研究天然产物小分子识别人类端粒G-四链体及复合物的热稳定性[J]. 物理化学学报, 2010, 26(04): 1082-1086.
[8] 郭慈, 刘翠, 杨忠志. 鸟嘌呤四链体中Na+的移动[J]. 物理化学学报, 2010, 26(02): 478-486.
[9] 齐齐, 孙岳明, 哈涌泉. 1,8-萘酰亚胺类衍生物的结构及紫外-可见吸收光谱[J]. 物理化学学报, 2009, 25(06): 1143-1148.
[10] 沈新媛 吕洋 李慎敏. 人体端粒中(3+1)混合结构G-四链体稳定性的分子动力学模拟[J]. 物理化学学报, 2009, 25(04): 783-791.
[11] 蒲敏;陈标华;李会英;刘坤辉. DFT法研究离子液中EMIM+催化丁烯双键异构反应机理(II)[J]. 物理化学学报, 2005, 21(04): 383-387.
[12] 蒲敏;刘坤辉;李会英;陈标华. DFT法研究离子液中EMIM催化丁烯双键异构反应机理[J]. 物理化学学报, 2004, 20(08): 826-830.