Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (2): 193-199    DOI: 10.3866/PKU.WHXB201801241
论文     
NiCo2S4六角片作为钠离子电池负极材料的电化学性能及储钠动力学
赵明宇,朱琳,付博文,江素华,周永宁,宋云*()
Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets
Mingyu ZHAO,Lin ZHU,Bowen FU,Suhua JIANG,Yongning ZHOU,Yun SONG*()
 全文: PDF(1542 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

通过共沉淀以及后续的气相硫化成功制备了横向边长约为2 μm,纵向厚度约为30 nm的NiCo2S4六角片,并研究了其作为钠离子电池负极材料的电化学性能。电化学性能测试结果显示在1000 mA·g-1的电流密度下,NiCo2S4电极循环60次后仍然可保持约387 mAh·g-1的可逆比容量。此外,NiCo2S4电极还具有良好的倍率性能,在200、400、800、1000和2000 mA·g-1的电流密度下,容量分别为542、398、347、300和217 mAh·g-1。通过进一步动力学机制分析发现,NiCo2S4电极的良好的倍率性能得益于其二维片层状结构诱导产生的赝电容。上述结果表明,NiCo2S4纳米六角片是一种极具潜力的钠离子电池负极材料。

关键词: 钠离子电池NiCo2S4纳米片负极材料储钠性能赝电容    
Abstract:

As a potential substitute for commercial lithium ion batteries (LIBs), sodium ion batteries (NIBs) have attracted increasing interest during the last decade. However, compared to the LIBs, the sluggish kinetics of sodium ion diffusion in NIBs due to its larger ionic radius results in deteriorated electrochemical performances, which hinders the future development and application of NIBs. Therefore, exploring anode materials that exhibit a novel kinetic mechanism is desired. Recently, extremely rapid kinetics has been realized by introducing the pseudocapacitance effect into battery systems; this effect generally refers to faradaic charge-transfer reactions, including surface or near-surface redox reactions, and fast bulk ion intercalation. To obtain a pseudocapacitance effect in battery systems, the critical step involves the rational design of a two-dimensional structure with a high conductivity. In this regard, the bimetallic sulfide thiospinel NiCo2S4 stands out by virtue of its high conductivity (1.25 × 106 S·m-1) at room temperature, which is at least two orders of magnitude higher than that of the oxide counterpart (NiCo2O4). Herein, NiCo2S4 hexagonal nanosheets with a large lateral dimension of ~2 μm and thickness ~30 nm have been successfully synthesized through coprecipitation followed by a vapor sulfidation method. As the anode material in NIBs, the NiCo2S4 nanosheets deliver a reversible capacity of 387 mAh·g-1 after 60 cycles at a current density of 1000 mA·g-1. Additionally, the NiCo2S4 nanosheets exhibit high reversible capacities of 542, 398, 347, 300, and 217 mAh·g-1 at the current densities 200, 400, 800, 1000, and 2000 mA·g-1, respectively. Ex situ X-ray diffraction analysis has been employed to reveal that the sodium ion storage process is a result of a combined Na+ intercalation and conversion reaction between Na+ and NiCo2S4. Further quantitative analysis of the kinetics has verified the extrinsic pseudocapacitance mechanism of the Na+ storage process, in which the capacitive contribution enlarges as the current density increases. The observed capacitive contribution of NiCo2S4 electrode is as high as 71% at a scan rate of 0.4 mV·s-1. This is closely attributed to the modified thin-sheet structure of NiCo2S4 and hybridization with graphene that account for the superior high-rate performance with long-term cyclability. These intriguing results shed light on a new strategy for the structural design of electrode materials for advanced NIBs. Moreover, this vapor transformation route can be extended to the preparation of other transition metal disulfides with high electrochemical activities, such as FeCo2S4, ZnCo2S4, CuCo2S4, etc.

Key words: Sodium ion battery    NiCo2S4 nanosheets    Anode material    Sodium storage capalibity    Pseudocapacitance
收稿日期: 2018-01-11 出版日期: 2018-01-24
中图分类号:  O646  
基金资助: 国家自然科学基金(51601040);国家自然科学基金(51572948);国家自然科学基金(51502039)
通讯作者: 宋云     E-mail: songyun@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵明宇
朱琳
付博文
江素华
周永宁
宋云

引用本文:

赵明宇,朱琳,付博文,江素华,周永宁,宋云. NiCo2S4六角片作为钠离子电池负极材料的电化学性能及储钠动力学[J]. 物理化学学报, 2019, 35(2): 193-199, 10.3866/PKU.WHXB201801241

Mingyu ZHAO,Lin ZHU,Bowen FU,Suhua JIANG,Yongning ZHOU,Yun SONG. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199, 10.3866/PKU.WHXB201801241.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201801241        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I2/193

图1  (a)二维NiCo2S4六角片的XRD图; (b)二维NiCo2S4六角片的Ni 2p高吸收XPS光谱; (c) Co 2p高吸收XPS光谱; (d) S 2p高吸收XPS光谱
图2  二维NiCo2S4六角片的(a,b) SEM图和(c) AFM图
图3  二维NiCo2S4六角片的(a)低倍TEM图; (b)选区电子衍射图; (c)高分辨TEM图
图4  (a) NiCo2S4六角片前四圈循环伏安曲线; (b)不同充放电状态下NiCo2S4电极片的离线XRD表征图; (c) NiCo2S4六角片电极前五圈恒流充电/放电曲线; (d) NiCo2S4与NiCo2O4电池的前60圈循环性能对比图; (e) NiCo2S4与NiCo2O4电池的倍率性能对比图
图5  (a) NiCo2S4六角片在不同扫描速率下(0.1到0.4 mV•s-1)的循环伏安曲线; (b)在不同峰电压下的lgi vs lgv的曲线; (c)在0.4 mV•s-1下循环伏安曲线中赝电容对电流的所占比例图; (d)在不同扫描速率下赝电容贡献所占比例条形图
1 Le Y. ; Yang J. F. ; Lou X. W. Angew. Chem. Int. Ed. 2016, 55, 13422.
doi: 10.1002/anie.201606776
2 Chen Y. M. ; Yu Y. M. ; Li Z. ; Paik U. ; Lou X. W. Sci. Adv. 2016, 2, 1600021.
doi: 10.1126/sciadv.1600021
3 Ye J. ; Chen T. ; Chen Q. ; Chen W. ; Yu Z. ; Xu S. J. Mater. Chem. A 2016, 4, 13194.
doi: 10.1039/c6ta04196e
4 Zhu Y. J. ; Fan X. L. ; Suo L. M. ; Luo C. ; Gao T. ; Wang C. S. ACS Nano 2016, 10, 1529.
doi: 10.1021/acsnano.5b07081
5 Li X. ; Zai J. ; Xiang S. ; Liu Y. ; He X. ; Xu Z. ; Wang K. ; Ma Z. ; Qian X. Adv. Energy Mater. 2016, 6, 1601056.
doi: 10.1002/aenm.201601056
6 Cabana J. ; Monconduit L. ; Larcher D. ; Palacín M. R. Adv. Mater. 2010, 22, E170.
doi: 10.1002/adma.201000717
7 Kim H. ; Kim D. J. ; Seo D. H. ; Yeom M. S. ; Kang K. ; Kim D. K. ; Jung Y. Chem. Mater. 2012, 24, 1205.
doi: 10.1021/cm300065y
8 Zhu Y. J. ; Choi S. H. ; Fan X. L. ; Shin J. ; Ma Z. H. ; Zachariah M. R. ; Jang W. C. ; Wang C. S. Adv. Energy Mater. 2017, 7, 1601578.
doi: 10.`s\vl VE`s\vl V
9 Lee E. ; Brown D. E. ; Alp E. E. ; Ren Y. ; Lu J. ; Woo J. J. ; Johnson C. S. Chem. Mater. 2015, 27, 6755.
doi: 10.1021/acs.chemmater.5b02918
10 Liu H. ; Jia M. Q. ; Zhu Q. Z. ; Cao B. ; Chen R. J. ; Wang Y. ; Wu F. ; Xu B. ACS Appl. Mater. Interfaces 2016, 8, 26878.
doi: 10.1021/acsami.6b09496
11 Jache B. ; Adelhelm P. Angew. Chem. Int. Ed. 2014, 53, 10169.
doi: 10.1002/anie.201403734
12 Che H. ; Chen S. ; Xie Y. ; Wang H. ; Amine K. ; Liao X. ; Ma Z. Energy Environ. Sci. 2017, 10, 1075.
doi: 10.1039/C7EE00524E
13 Li T. ; Xu Y. ; Xing F. ; Cao X. ; Bian J. ; Wang N. ; Wang Z. L. Adv. Energy Mater. 2017, 7, 1700124.
doi: 10.1002/aenm.201700124
14 Zou R. ; Zhang Z. ; Yuen M. F. ; Sun M. ; Hu J. ; Lee C. S. ; Zhang W. NPG Asia Mater. 2015, 7, 195.
doi: 10.1038/am.2015.63
15 Kang W. ; Wang Y. ; Xu J. J. Mater. Chem. A 2017, 5, 7667.
doi: 10.1039/C7TA00003K
16 Chen S. ; Qiao S. Z. ACS Nano 2013, 7, 10190.
doi: 10.1021/nn404444r
17 Wu X. ; Li S. ; Wang B. ; Liu J. ; Yu M. Phys. Chem. Chem. Phys. 2017, 19, 11554.
doi: 10.1039/C7CP00509A
18 Yuan D. X. ; Huang G. ; Yin D. M. ; Wang X. X. ; Wang C. L. ; Wang L. M. ACS Appl. Mater. Interfaces 2017, 9, 18178.
doi: 10.1021/acsami.7b02176
19 Xiao Y. ; Lee S. H. ; Sun Y. K. Adv. Energy Mater. 2016, 7, 1601329.
doi: 10.1002/aenm.201601329
20 Chen S. Q. ; Wu S. ; Shen L. F. ; Zhu C. B. ; Huang Y. Y. ; Xi K. ; Maier J. ; Yu Y. Adv. Mater. 2017, 1700431.
doi: 10.1002/adma.201700431
21 Liu, J. H. ; Zhang, H. ; Liu, X. J. ; Liu, J. S. Inorg. Chem. 2015, 32, 2331.
刘家辉,张辉,崔艳华,刘效疆,刘劲松.无机化学学报, 2015, 32, 2331 doi: 10.11826/CJIC.2015.306
22 Kyle C. K. ; Stephany G. ; Naween D. ; Jonathan L. S. ; Souza J. P. ; Trevor H. C. ; Mark A. C. ; Adam H. ; Simon M. H. ; Mullins B. C. J. Mater. Chem. A 2014, 2, 14209.
doi: 10.1039/c4ta02684e
23 Hu T. T. ; Liu Z. G. ; Borkiewicz O. J. ; Cheng J. ; Hua X. ; Dunstan M. T. ; Yu X. Q. ; Wiaderek K.M. ; Du L. S. ; Chapman K. W. ; et al Nat. Mater. 2013, 12, 1130.
doi: 10.1038/NMAT3784
24 Li T. ; Long Z. H. ; Zhang D. H. Acta Phys. -Chim. Sin. 2016, 32, 573.
doi: 10.3866/PKU.WHXB201511105
李婷; 龙志辉; 张道洪. 物理化学学报, 2016, 32, 573.
doi: 10.3866/PKU.WHXB201511105
25 Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater. 2013, 23, 947.
doi: 10.1002/adfm.v23.8
26 Song Y. ; Chen Z. ; Li Y. ; Qin C.W. ; Fang F. ; Zhou Y. ; Hu L. ; Sun D. J. Mater. Chem. A 2017, 5, 9022.
doi: 10.1039/C7TA01758H
27 Wu X. ; Li S. ; Wang B. ; Liu J. ; Yu M. Phys. Chem. Chem. Phys. 2016, 18, 4505.
doi: 10.1039/c5cp07541f
28 Song Y. ; Cao Y. ; Wang J. ; Zhou Y. N. ; Fang F. ; Li Y. ; Gao S. P. ; Gu Q. F. ; Hu L. ; Sun D. ACS Appl. Mater. Interfaces 2016, 3, 21334.
doi: 10.1021/acsami.6b05506
29 Brezensinski T. ; Wang J. ; Tolbert S. H. ; Dunn B. Nat. Mater. 2010, 9, 146.
doi: 10.1038/nmat2612
30 Sun R. M. ; Wei Q. L. ; Sheng J. Z. ; Shi C. W. ; An Q. Y. ; Lin S. J. ; Mai L. Q. Nano Energy 2017, 35, 396.
doi: 10.1016/j.nanoen.2017.03.036
31 Simon P. ; Gogotsi Y. ; Dunn B. Science 2014, 343, 1210.
doi: 10.1126/science.1249625
32 Chao D. L. ; Zhu C. R. ; Yang P. H. ; Xia X. H. ; Liu J. L. ; Wang J. ; Fan X. F. ; Savilov S. V. ; Lin J. Y. ; Fan H. J. ; et al Nat. Commun. 2016, 7, 12122.
doi: 10.1038/ncomms12122
[1] 刘双,邵涟漪,张雪静,陶占良,陈军. 水系钠离子电池电极材料研究进展[J]. 物理化学学报, 2018, 34(6): 581-597.
[2] 张熙悦,黄雅兰,吴树炜,曾银香,于明浩,程发良,卢锡洪,童叶翔. 碳布负载的缺氧型Na2Ti3O7纳米带阵列作为高性能柔性钠离子电池负极材料[J]. 物理化学学报, 2018, 34(2): 219-226.
[3] 甄绪,郭雪静. 三维介孔钴酸锌立方体的制备及其优异的储锂性能[J]. 物理化学学报, 2017, 33(4): 845-852.
[4] 赵立平,孟未帅,王宏宇,齐力. 二硫化钼-碳复合材料用作钠离子电容电池负极材料[J]. 物理化学学报, 2017, 33(4): 787-794.
[5] 吴中,张新波. 高容量超级电容器电极材料的设计与制备[J]. 物理化学学报, 2017, 33(2): 305-313.
[6] 牛晓叶,杜小琴,王钦超,吴晓京,张昕,周永宁. AlN-Fe纳米复合薄膜:一种新型锂离子电池负极材料[J]. 物理化学学报, 2017, 33(12): 2517-2522.
[7] 彭勃,徐耀林,Fokko M. Mulder. 磷烯包覆的高性能硅基锂离子电池负极材料[J]. 物理化学学报, 2017, 33(11): 2127-2132.
[8] 方永进,陈重学,艾新平,杨汉西,曹余良. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
[9] 唐艳平,元莎,郭玉忠,黄瑞安,王剑华,杨斌,戴永年. 镁热还原法制备有序介孔Si/C锂离子电池负极材料及其电化学性能[J]. 物理化学学报, 2016, 32(9): 2280-2286.
[10] 黄家骏,董志军,张旭,袁观明,丛野,崔正威,李轩科. 带状中间相沥青基石墨纤维结构对电化学性能的影响[J]. 物理化学学报, 2016, 32(7): 1699-1707.
[11] 黄威,邬春阳,曾跃武,金传洪,张泽. P2型钠离子电池正极材料Na0.66Mn0.675Ni0.1625Co0.1625O2的表面重构及其演变的电子显微表征[J]. 物理化学学报, 2016, 32(6): 1489-1494.
[12] 杨泽,张旺,沈越,袁利霞,黄云辉. 下一代能源存储技术及其关键电极材料[J]. 物理化学学报, 2016, 32(5): 1062-1071.
[13] 王永芳,左宋林. 含磷活性炭作为双电层电容器电极材料的电化学性能[J]. 物理化学学报, 2016, 32(2): 481-492.
[14] 李婷,龙志辉,张道洪. Fe2O3/rGO纳米复合物的制备及其储锂和储钠性能[J]. 物理化学学报, 2016, 32(2): 573-580.
[15] 陈程成,张宁,刘永畅,王一菁,陈军. Na2Ti3O7纳米片原位制备与钠离子电池负极材料应用[J]. 物理化学学报, 2016, 32(1): 349-355.