Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (2): 200-207    DOI: 10.3866/PKU.WHXB201803083
论文     
润湿特性对超级电容器储能动力学的影响机理
杨化超,薄拯*(),帅骁睿,严建华,岑可法
Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors
Huachao YANG,Zheng BO*(),Xiaorui SHUAI,Jianhua YAN,Kefa CEN
 全文: PDF(2710 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

润湿特性对超级电容器储能性能有着至关重要的影响。借助分子动力学模拟,本文研究了润湿特性对超级电容器储能动力学行为的影响。以石墨烯和晶体铜作为疏电解液和亲电解液电极材料。结果表明,在充电过程中,亲电解液铜电极呈现出非对称的U型微分电容曲线,负极电容是正极的~5.77倍,不同于经典双电层理论Gouy-Chapman-Stern(对称U型)和疏电解液型。该现象与离子自由能阻力分布密切相关,负极自由能阻力远小于正极(~2倍)和疏电解液电极,进而有利于强化双电层结构对电极电压的响应能力,导致更高微分电容。通过微分离子电荷密度,本文再现了微分电容演变规律,并发现改善润湿性会显著降低双电层厚度。最后,我们指出润湿性直接影响储能微观机理,将电荷储存机制从离子吸附和交换共同主导(疏电解液)转变到离子吸附主导(亲电解液)。本文所得结论揭示了润湿特性对储能动力学行为影响的原子层级机理,对超级电容器材料设计、构筑与润湿特性调控具有重要指导意义。

关键词: 润湿特性微分电容储能动力学分子动力学模拟超级电容器    
Abstract:

Electric double-layer capacitors (EDLCs) are advanced electrochemical devices that have attracted tremendous attention because of their high power density, ultra-fast charging/discharging rate, and superior lifespan. A major challenge is how to further improve their energy density. At present, a large number of research efforts are primarily focusing on engineering the morphology and microstructure of electrodes to achieve better performance, for example, enlarging the specific surface area and designing the pore size. More importantly, wettability plays a crucial role in maximizing the effective utilization and accessibility of electrode materials. However, its primary mechanisms/phenomena are still partially resolved. Here, we explore the effects of wettability on the charging dynamics of EDLCs using molecular dynamics (MD) simulations. Typically, hydrophobic graphene (GP) and hydrophilic copper (Cu) are employed as the electrode materials. Differential capacitances (CD) as a function of electrode potentials (ϕ) are computed by means of Poisson and Gaussian equation calculations. Simulation results show that during the charging process of EDLCs, the differential capacitances of hydrophobic GP are insensitive to the electrode potentials. However, superhydrophilic Cu electrode exhibits an asymmetric U-shaped CDϕ curve, in which the capacitance at the negative polarization can be ~5.77 times greater than that of the positive counterpart. Such an unusual behavior is obviously different with the conventional Gouy-Chapman-Stern theory (i.e., symmetric U-shaped), room temperature ionic liquids (i.e., camel-, or bell-shaped), and hydrophobic counterpart, which is closely correlated with the free energy barrier distributions. Compared with the positive polarization or hydrophobic case, the energy barriers near the negative hydrophilic electrodes are remarkably suppressed, which benefits ion populations at the interface and enables the convenient orientation or distribution of ions to shield the external electric fields from electrodes, thereby yielding higher differential capacitances. With differentiating the ion charge density, the as-obtained CDϕ curves are well resembled, quantitatively establishing the correlations between EDL microstructures and differential capacitances. Besides, we also point out that enhancing the wettability could significantly decrease the EDL thickness from ~1.0 nm (hydrophobic) to ~0.5 nm (hydrophilic). In the end, we demonstrate that wetting property also impacts a prominent role in the charge storage behavior of EDLCs, transforming the charging mechanism dominated by counter-ion adsorption and ion exchange (hydrophobic) to pure counter-ion adsorption (hydrophilic). The as-obtained insights highlight the significance of wettability in regulating charging dynamics and mechanisms, providing useful guidelines for precisely controlling the wetting property of electrode materials for advanced charge storage of EDLCs.

Key words: Wetting property    Differential capacitance    Charging dynamics    Molecular dynamics simulation    Electric double-layer capacitor
收稿日期: 2018-02-10 出版日期: 2018-03-08
中图分类号:  O646  
基金资助: 国家自然科学基金(51306159);浙江省自然科学基金(LR17E060002)
通讯作者: 薄拯     E-mail: bozh@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨化超
薄拯
帅骁睿
严建华
岑可法

引用本文:

杨化超,薄拯,帅骁睿,严建华,岑可法. 润湿特性对超级电容器储能动力学的影响机理[J]. 物理化学学报, 2019, 35(2): 200-207, 10.3866/PKU.WHXB201803083

Huachao YANG,Zheng BO,Xiaorui SHUAI,Jianhua YAN,Kefa CEN. Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors. Acta Phys. -Chim. Sin., 2019, 35(2): 200-207, 10.3866/PKU.WHXB201803083.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201803083        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I2/200

图1  (a)疏电解液石墨烯和(b)亲电解液铜电极的MD模型
图2  微分电容CD随电极电势ϕ变化规律
图3  当电极表面被负电荷极化时,石墨烯电极附近(a) Na+和(b) Cl-离子数密度分布和铜电极附近(c) Na+和(d) Cl-离子数密度
图4  (a)双电层厚度d示意图;不同双电层厚度d下,(b)石墨烯和(c)铜电极的电荷密度微分曲线ρD
图5  当电极表面被负电荷极化时,石墨烯电极附近(a) Na+和(b) Cl-离子自由能曲线和铜电极附近(c) Na+和(d) Cl-离子自由能曲线
图6  石墨烯和铜电极的电荷储存系数χ
25 Kalluri R. K. ; Ho T. A. ; Biener J. ; Biener M. M. ; Striolo A. J. Phys. Chem. C 2013, 117, 13609.
doi: 10.1021/jp4002127
26 Qiu Y. ; Chen Y. J. Phys. Chem. C 2015, 119, 23813.
doi: 10.1021/acs.jpcc.5b06401
27 Cheng A. ; Steele W. A. J. Chem. Phys. 1990, 92, 3858.
doi: 10.1063/1.458562
28 Yang H. ; Bo Z. ; Yang J. ; Kong J. ; Chen X. ; Yan J. ; Cen K. ChemElectroChem 2017, 4, 2966.
doi: 10.1002/celc.201700733
29 Berendsen H. J. C. ; Grigera J. R. ; Straatsma T. P. J. Phys. Chem. 1987, 91, 6269.
doi: 10.1021/j100308a038
30 Striolo A. Nano Lett. 2006, 6, 633.
doi: 10.1021/nl052254u
31 Liu L. ; Zhao J. ; Yin C. Y. ; Culligan P. J. ; Chen X. Phys. Chem. Chem. Phys. 2009, 11, 6520.
doi: 10.1039/B905641F
32 Wander M. C. F. ; Shuford K. L. J. Phys. Chem. C 2010, 114, 20539.
doi: 10.1021/jp104972e
33 Plimpton S. J. Comput. Phys. 1995, 117, 1.
doi: 10.1006/jcph.1995.1039
34 Humphrey W. ; Dalke A. ; Schulten K. J. Mol. Graphics 1996, 14, 33.
doi: 10.1016/0263-7855(96)00018-5
1 Zhang S. ; Pan N. Adv. Energy Mater. 2015, 5, 1401401.
doi: 10.1002/aenm.201401401
2 Li X. Q. ; Chang L. ; Zhao S. L. ; Hao C. L. ; Lu C. G. ; Zhu Y. H. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2017, 33, 130.
doi: 10.3866/PKU.WHXB201609012
35 Swope W. C. ; Andersen H. C. ; Berens P. H. ; Wilson K. R. J. Chem. Phys. 1982, 76, 637.
doi: 10.1063/1.442716
36 Zhan C. ; Zhang Y. ; Cummings P. T. ; Jiang D. E. Phys. Chem. Chem. Phys. 2016, 18, 4668.
doi: 10.1039/C5CP06952A
2 李雪芹; 常琳; 赵慎龙; 郝昌龙; 陆晨光; 朱以华; 唐智勇. 物理化学学报, 2017, 33, 130.
doi: 10.3866/PKU.WHXB201609012
3 Liu L. ; Niu Z. ; Chen J. Chem. Soc. Rev. 2016, 45, 4340.
doi: 10.1039/C6CS00041J
4 Wu Z. ; Zhang X. B. Acta Phys. -Chim. Sin. 2017, 33, 305.
doi: 10.3866/PKU.WHXB201611012
吴中; 张新波. 物理化学学报, 2017, 33, 305.
doi: 10.3866/PKU.WHXB201611012
5 Zhang F. ; Liu T. ; Li M. ; Yu M. ; Luo Y. ; Tong Y. ; Li Y. Nano Lett. 2017, 17, 3097.
doi: 10.1021/acs.nanolett.7b00533
6 Chmiola J. ; Yushin G. ; Gogotsi Y. ; Portet C. ; Simon P. ; Taberna P. L. Science 2006, 313, 1760.
doi: 10.1126/science.1132195
7 Du W. S. ; Lu Y. K. ; Cai Z. W. ; Zhang C. Acta Phys. -Chim. Sin. 2017, 33, 1828.
doi: 10.3866/PKU.WHXB201705089
杜惟实; 吕耀康; 蔡志威; 张诚. 物理化学学报, 2017, 33, 1828.
doi: 10.3866/PKU.WHXB201705089
8 Liu D. ; Shen J. ; Li Y. J. ; Liu N. P. ; Liu B. Acta Phys. -Chim. Sin. 2012, 28, 843.
doi: 10.3866/PKU.WHXB201202172
刘冬; 沈军; 李亚捷; 刘念平; 刘斌. 物理化学学报, 2012, 28, 843.
doi: 10.3866/PKU.WHXB201202172
9 Qi J. L. ; Wang X. ; Lin J. H. ; Zhang F. ; Feng J. C. ; Fei W. D. Nanoscale 2015, 7, 3675.
doi: 10.1039/c4nr07284g
10 Ye J. S. ; Liu X. ; Cui H. F. ; Zhang W. D. ; Sheu F. S. ; Lim T. M. Electrochem. Commun. 2005, 7, 249.
doi: 10.1016/j.elecom.2005.01.008
11 Zhao J. ; Lai H. ; Lyu Z. ; Jiang Y. ; Xie K. ; Wang X. ; Wu Q. ; Yang L. ; Jin Z. ; Ma Y. ; et al Adv. Mater. 2015, 27, 3541.
doi: 10.1002/adma.201500945
12 Qi J. L. ; Lin J. H. ; Wang X. ; Guo J. L. ; Xue L. F. ; Feng J. C. ; Fei W. D. Nano Energy 2016, 26, 657.
doi: 10.1016/j.nanoen.2016.05.036
13 Kondrat S. ; Wu P. ; Qiao R. ; Kornyshev A. A. Nat. Mater. 2014, 13, 387.
doi: 10.1038/nmat3916
14 Kondrat S. ; Kornyshev A. A. Nanoscale Horiz. 2016, 1, 45.
doi: 10.1039/C5NH00004A
15 Cheng L. ; Xian K. ; Honglai L. ; Jianzhong W. J. Phys.: Condens. Matter 2016, 28, 464008.
doi: 10.1088/0953-8984/28/46/464008
16 Cheng L. ; Honglai L. ; Douglas H. ; Jianzhong W. J. Phys.: Condens. Matter 2016, 28, 414005.
doi: 10.1088/0953-8984/28/41/414005
17 Burt R. ; Birkett G. ; Zhao X. S. Phys. Chem. Chem. Phys. 2014, 16, 6519.
doi: 10.1039/C3CP55186E
18 Feng G. ; Qiao R. ; Huang J. ; Sumpter B. G. ; Meunier V. ACS Nano 2010, 4, 2382.
doi: 10.1021/nn100126w
19 Yang H. ; Zhang X. ; Yang J. ; Bo Z. ; Hu M. ; Yan J. ; Cen K. J. Phys. Chem. Lett. 2016, 153
doi: 10.1021/acs.jpclett.6b02659
20 Bo Z. ; Yang H. ; Zhang S. ; Yang J. ; Yan J. ; Cen K. Sci. Rep. 2015, 5, 14652.
doi: 10.1038/srep14652
21 Yang H. ; Yang J. ; Bo Z. ; Zhang S. ; Yan J. ; Cen K. J. Power Sources 2016, 324, 309.
doi: 10.1016/j.jpowsour.2016.05.072
22 Yang H. ; Yang J. ; Bo Z. ; Chen X. ; Shuai X. ; Kong J. ; Yan J. ; Cen K. J. Phys. Chem. Lett. 2017, 3703.
doi: 10.1021/acs.jpclett.7b01525
23 Raj R. ; Maroo S. C. ; Wang E. N. Nano Lett. 2013, 13, 1509.
doi: 10.1021/nl304647t
24 Wang S. ; Zhang Y. ; Abidi N. ; Cabrales L. Langmuir 2009, 25, 11078.
doi: 10.1021/la901402f
37 Sha M. ; Dou Q. ; Luo F. ; Zhu G. ; Wu G. ACS Appl. Mater. Interfaces 2014, 6, 12556.
doi: 10.1021/am502413m
38 Feng G. ; Zhang J. S. ; Qiao R. J. Phys. Chem. C 2009, 113, 4549.
doi: 10.1021/jp809900w
39 Xu K. ; Ji X. ; Chen C. ; Wan H. ; Miao L. ; Jiang J. Electrochim. Acta 2015, 166, 142.
doi: 10.1016/j.electacta.2015.03.101
40 Jiang G. ; Cheng C. ; Li D. ; Liu J. Z. Nano Res. 2016, 9, 174.
doi: 10.1007/s12274-015-0978-5
41 Ho T. A. ; Striolo A. J. Chem. Phys. 2013, 139, 204708.
doi: 10.1063/1.4833316
42 Feng G. A. ; Qiao R. ; Huang J. S. ; Sumpter B. G. ; Meunier V. J. Phys. Chem. C 2010, 114, 18012.
doi: 10.1021/jp107125m
43 Huang J. S. ; Sumpter B. G. ; Meunier V. Chem. -Eur. J. 2008, 14, 6614.
doi: 10.1002/chem.200800639
44 Huang J. ; Sumpter B. G. ; Meunier V. Angew. Chem. Int. Ed. 2008, 47, 520.
doi: 10.1002/anie.200703864
45 Merlet C. ; Salanne M. ; Rotenberg B. ; Madden P. A. Electrochim. Acta 2013, 101, 262.
doi: 10.1016/j.electacta.2012.12.107
46 Lynden-Bell R. M. ; Frolov A. I. ; Fedorov M. V. Phys. Chem. Chem. Phys. 2012, 14, 2693.
doi: 10.1039/C2CP23267G
47 Forse A. C. ; Merlet C. ; Griffin J. M. ; Grey C. P. J. Am. Chem. Soc. 2016, 138, 5731.
doi: 10.1021/jacs.6b02115
48 Forse A. C. ; Griffin J. M. ; Merlet C. ; Bayley P. M. ; Wang H. ; Simon P. ; Grey C. P. J. Am. Chem. Soc. 2015, 137, 7231.
doi: 10.1021/jacs.5b03958
[1] 神祥艳,何建江,王宁,黄长水. 石墨炔在电化学储能器件中的应用[J]. 物理化学学报, 2018, 34(9): 1029-1047.
[2] 陈文琼,关永吉,张晓萍,邓友全. 分子动力学模拟研究外电场对咪唑类离子液体振动谱的影响[J]. 物理化学学报, 2018, 34(8): 912-919.
[3] 王海燕,石高全. 层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用[J]. 物理化学学报, 2018, 34(1): 22-35.
[4] 刘夫锋,范玉波,刘珍,白姝. ZAβ3和Aβ16-40亲和作用的分子机理解析[J]. 物理化学学报, 2017, 33(9): 1905-1914.
[5] 杜惟实,吕耀康,蔡志威,张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报, 2017, 33(9): 1828-1837.
[6] 王子民,郑默,谢勇冰,李晓霞,曾鸣,曹宏斌,郭力. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7): 1399-1410.
[7] 曹了然,张春煜,张鼎林,楚慧郢,张跃斌,李国辉. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报, 2017, 33(7): 1354-1365.
[8] 陈贻建,周洪涛,葛际江,徐桂英. 双链阴离子表面活性剂1-烷基-癸基磺酸钠在气/液界面聚集行为:分子动力学模拟研究[J]. 物理化学学报, 2017, 33(6): 1214-1222.
[9] 陈芳,刘圆圆,王建龙,苏宁宁,李丽洁,陈红春. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.
[10] 吴中,张新波. 高容量超级电容器电极材料的设计与制备[J]. 物理化学学报, 2017, 33(2): 305-313.
[11] 廖春荣,熊峰,李贤军,吴义强,罗勇锋. 导电聚合物在纤维状能源器件中的应用进展[J]. 物理化学学报, 2017, 33(2): 329-343.
[12] 刘青康,宋文平,黄其涛,张广玉,侯珍秀. 热辅助存储磁盘硅掺杂非晶碳薄膜氧化的ReaxFF反应力场分子动力学模拟[J]. 物理化学学报, 2017, 33(12): 2472-2479.
[13] 孙怡然,于飞,马杰. 纳米受限水的研究进展[J]. 物理化学学报, 2017, 33(11): 2173-2183.
[14] 李道琰,张基琛,王志勇,金先波. 蜂巢状多孔明胶制备高性能超级电容器用活性炭[J]. 物理化学学报, 2017, 33(11): 2245-2252.
[15] 张陶娜,徐雪雯,董亮,谭昭怡,刘春立. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017, 33(10): 2013-2021.