Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1373-1380    DOI: 10.3866/PKU.WHXB201804131
所属专题: 表面物理化学
论文     
氧化锌有序结构在Au(111)和Cu(111)上的生长
赵新飞1,2,陈浩1,2,吴昊1,3,王睿4,5,崔义4,傅强1,杨帆1,*(),包信和1
1 中国科学院大连化学物理研究所,催化基础国家重点实验室,辽宁 大连 116023
2 中国科学院大学,北京 100049
3 中国科学技术大学化学物理系,合肥 230026
4 中国科学院苏州纳米技术与纳米仿生研究所,纳米真空互联实验站,江苏 苏州 215123
5 中国科学技术大学纳米科学技术学院,江苏 苏州 215123
Growth of Ordered ZnO Structures on Au(111) and Cu(111)
Xinfei ZHAO1,2,Hao CHEN1,2,Hao WU1,3,Rui WANG4,5,Yi CUI4,Qiang FU1,Fan YANG1,*(),Xinhe BAO1
1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
3 Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
4 Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
5 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu Province, P. R. China
 全文: PDF(4118 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

利用NO2或O2作为氧化剂,研究了氧化锌在Au(111)和Cu(111)上的生长和结构。NO2表现了更好的氧化性能,有利于有序氧化锌纳米结构或薄膜的生长。在Au(111)和Cu(111)这两个表面上,化学计量比氧化锌都形成非极性的平面化ZnO(0001)的表面结构。在Au(111)上,NO2气氛下室温沉积锌倾向于形成双层氧化锌纳米结构;而在更高的沉积温度下,在NO2气氛中沉积锌则可同时观测到单层和双层氧化锌纳米结构。O2作为氧化剂时可导致形成亚化学计量比的ZnOx结构。由于铜和锌之间的强相互作用会促进锌的体相扩散,并且铜表面可以被氧化形成表面氧化物,整层氧化锌在Cu(111)上的生长相当困难。我们通过使用NO2作为氧化剂解决了这个问题,生长出了覆盖Cu(111)表面的满层有序氧化锌薄膜。这些有序氧化锌薄膜表面显示出莫尔条纹,表明存在一个ZnO和Cu(111)之间的莫尔超晶格。实验上观察到的超晶格结构与最近理论计算提出的Cu(111)上的氧化锌薄膜结构相符,具有最小应力。我们的研究表明,氧化锌薄膜的表界面结构可能会随氧化程度或氧化剂的不同而变化,而Cu(111)的表面氧化也可能影响氧化锌的生长。当Cu(111)表面被预氧化成铜表面氧化物时,ZnOx的生长模式会发生变化,锌原子会受到铜氧化物晶格的限域形成单位点锌。我们的研究表明了氧化锌的生长需要抑制锌向金属基底的扩散,并阻止亚化学计量比ZnOx的形成。因此,使用原子氧源有利于在Au(111)和Cu(111)表面上生长有序氧化锌薄膜。

关键词: ZnO/Au(111)ZnO/Cu(111)扫描隧道显微镜X射线光电子能谱模型催化    
Abstract:

The growth and structural properties of ZnO thin films on both Au(111) and Cu(111) surfaces were studied using either NO2 or O2 as oxidizing agent. The results indicate that NO2 promotes the formation of well-ordered ZnO thin films on both Au(111) and Cu(111). The stoichiometric ZnO thin films obtained on these two surfaces exhibit a flattened and non-polar ZnO(0001) structure. It is shown that on Au(111), the growth of bilayer ZnO nanostructures (NSs) is favored during the deposition of Zn in presence of NO2 at 300 K, whereas both monolayer and bilayer ZnO NSs could be observed when Zn is deposited at elevated temperatures under a NO2 atmosphere. The growth of bilayer ZnO NSs is caused by the stronger interaction between two ZnO layers than between ZnO and Au(111) surface. In contrast, the growth of monolayer ZnO NSs involves a kinetically controlled process. ZnO thin films covering the Au(111) surface exhibits a multilayer thickness, which is consistent with the growth kinetics of ZnO NSs. Besides, the use of O2 as oxidizing agent could lead to the formation of sub-stoichiometric ZnOx structures. The growth of full layers of ZnO on Cu(111) has been a difficult task, mainly because of the interdiffusion of Zn promoted by the strong interaction between Cu and Zn and the formation of Cu surface oxides by the oxidation of Cu(111). We overcome this problem by using NO2 as oxidizing agent to form well-ordered ZnO thin films covering the Cu(111) surface. The surface of the well-ordered ZnO thin films on Cu(111) displays mainly a moiré pattern, which suggests a (3 × 3) ZnO superlattice supported on a (4 × 4) supercell of Cu(111). The observation of this superstructure provides a direct experimental evidence for the recently proposed structural model of ZnO on Cu(111), which suggests that this superstructure exhibits the minimal strain. Our studies suggested that the surface structures of ZnO thin films could change depending on the oxidation level or the oxidant used. The oxidation of Cu(111) could also become a key factor for the growth of ZnO. When Cu(111) is pre-oxidized to form copper surface oxides, the growth mode of ZnOx is altered and single-site Zn could be confined into the lattice of copper surface oxides. Our studies show that the growth of ZnO is promoted by inhibiting the diffusion of Zn into metal substrates and preventing the formation of sub-stoichiometric ZnOx. In short, the use of an atomic oxygen source is advantageous to the growth of ZnO thin films on Au(111) and Cu(111) surfaces.

Key words: ZnO/Au(111)    ZnO/Cu(111)    STM    XPS    Model catalysis
收稿日期: 2018-03-15 出版日期: 2018-04-13
中图分类号:  O643  
基金资助: 科技部国家重点研发计划(2017YFB0602205);科技部国家重点研发计划(2016YFA0202803);国家自然科学基金(21473191);国家自然科学基金(91545204);国家青年千人计划资助项目
通讯作者: 杨帆     E-mail: fyang@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵新飞
陈浩
吴昊
王睿
崔义
傅强
杨帆
包信和

引用本文:

赵新飞,陈浩,吴昊,王睿,崔义,傅强,杨帆,包信和. 氧化锌有序结构在Au(111)和Cu(111)上的生长[J]. 物理化学学报, 2018, 34(12): 1373-1380.

Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111). Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201804131        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I12/1373

Fig 1  The growth of ZnO nanostructures (NSs) on Au(111) in NO2. (a) STM image of bilayer ZnO NSs prepared by depositing Zn in 1 × 10-7 mbar NO2 at 300 K, which is followed by the annealing in 1 × 10-7 mbar NO2 and then in UHV at ~600 K. The apparent height of bilayer ZnO NS is shown in (b). The atomic lattice of bilayer ZnO NS is displayed in (c), with the surface line profile plotted in (d). (e) STM image of monolayer and bilayer ZnO NSs prepared by depositing Zn in 1 × 10-7 mbar NO2 at ~450 K. The apparent height of monolayer ZnO NS is shown in (f). The atomic lattice of monolayer ZnO NS is displayed in (g), with the surface line profile plotted in (h). Scanning parameters: (a) Vs = 1.4 V, It = 0.18 nA; (c) Vs = 1.4 V, It = 0.35 nA; (e) Vs = 2.0 V, It = 0.31 nA; (g) Vs = 0.26 V, It = 0.26 nA.
Fig 2  The structural models of ZnO structures on Au(111). (a) ZnO monolayer (ML) on Au(111). (b) ZnO bilayer (BL) on Au(111). The white lines in the upper panels (top view) mark the coincidence lattice between ZnO and Au(111). The low panels are the side views of ML ZnO and BL ZnO, respectively. The color representations are: gray-Zn; red-O; yellow-Au.
Fig 3  The growth of ZnO thin films and ZnOx islands on Au(111). (a) STM image of the ZnO film prepared by depositing Zn in 1 × 10-7 mbar NO2 on Au(111) at 300 K, which is followed by annealing in 1 × 10-7 mbar NO2 at ~450 K and then in UHV at ~600 K. (b) Atomic-resolution image of the ZnO film on Au(111). (c) STM image of the sample surface prepared by depositing Zn atoms in 2 × 10-6 mbar O2 on Au(111) at 300 K, followed by annealing in 2 × 10-6 mbar O2 at ~500 K. The line profile in (c) is plotted in (d). Scanning parameters: (b) Vs = 53 mV, It = 1.12 nA.
Fig 4  The growth of ZnO thin films on Cu(111). (a) STM image of the ZnO film prepared by depositing Zn in 1 × 10-7 mbar NO2 on Cu(111) at 300 K, followed by annealing in 5 × 10-8 mbar NO2 at ~500 K. (b) Magnified STM image showing the moiré lattice of the ZnO film on Cu(111). Inset shows the lattice spacing is ~10 ?. (c) The structural model of the ZnO film in (a-b). Red, gray and brown balls represent O, Zn and Cu atoms. (d) STM image of anther surface region of the ZnO surface prepared in (a). The relatively flat regions, as marked by red dots in (d), display another super lattice, as shown in (e), with a lattice spacing of ~5.5 ?. The lattice is rotated by ~30° with respect to the lattice in (b). The corresponding structural model is shown in (f). Red, gray and brown balls represent O, Zn and Cu atoms. Scanning parameters: (b) Vs = 1.3 V, It = 0.12 nA; (e) Vs = 1.3 V, It = 0.12 nA.
Fig 5  XPS spectra of ZnO thin films on Cu(111). The ZnO thin films were prepared by depositing Zn in 2 × 10-7 mbar NO2 onto Cu(111) at 300 K, which is followed by annealing in 5 × 10-8 mbar NO2 at ~600 K. Black curves represent the clean Cu(111) surface before preparation and red curves represent the ZnO thin film after the preparation. The overlapping of Cu spectra is to show that no oxidation of Cu(111) is detected in the XPS spectra.
Fig 6  STM images of the ZnO thin films prepared by depositing Zn atoms in 2 × 10-5 mbar O2 onto Cu(111), which is followed by annealing in 5 × 10-8 mbar NO2 at ~600 K. Scanning parameters: (b) Vs = 2.9 V, It = 0.12 nA.
Fig 7  The growth of ZnOx in O2 on Cu(111). (a) STM image of the surface prepared by depositing Zn atoms in 2 × 10-6 mbar O2 on Cu(111) at 300 K. The line profile marked in (a) is displayed in (b). (c) STM image of the surface of (a) after the annealing in 2 × 10-5 mbar O2 at ~550 K. (d) High resolution STM image of the surface in (c). (e) STM image of Zn atoms deposited in 2 × 10-5 mbar O2 at 300 K onto a pre-oxidized Cu(111) surface. (f) Magnified STM image of the surface in (e), showing the presence of single-site Zn embedded in the lattice of copper surface oxides. Scanning parameters: (d) Vs = 0.78 V, It = 0.08 nA; (f) Vs = 1.4 V, It = 0.08 nA.
1 Klier K. Adv. Catal. 1982, 31, 243.
doi: 10.1016/s0360-0564(08)60455-1
2 Ratnasamy C. ; Wagner J. P. Catal. Rev. Sci. Eng. 2009, 51, 325.
doi: 10.1080/01614940903048661
3 Newsome D. S. Catal. Rev. Sci. Eng. 1980, 21, 275.
doi: 10.1080/03602458008067535
4 Jiao F. ; Li J. ; Pan X. ; Xiao J. ; Li H. ; Ma H. ; Wei M. ; Pan Y. ; Zhou Z. ; Li M. ; et al Science 2016, 351, 1065.
doi: 10.1126/science.aaf1835
5 Pan Q. ; Liu B. H. ; McBriarty M. E. ; Martynova Y. ; Groot I. M. N. ; Wang S. ; Bedzyk M. J. ; Shaikhutdinov S. ; Freund H. J. Catal. Lett. 2014, 144, 648.
doi: 10.1007/s10562-014-1191-y
6 Martynova Y. ; Liu B. H. ; McBriarty M. E. ; Groot I. M. N. ; Bedzyk M. J. ; Shaikhutdinov S. ; Freund H. J. J. Catal. 2013, 301, 227.
doi: 10.1016/j.jcat.2013.02.018
7 Ta H. Q. ; Zhao L. ; Pohl D. ; Pang J. B. ; Trzebicka B. ; Rellinghaus B. ; Pribat D. ; Gemming T. ; Liu Z. F. ; Bachmatiuk A. ; et al Crystals 2016, 6, 100.
doi: 10.3390/cryst6080100
8 Weirum G. ; Barcaro G. ; Fortunelli A. ; Weber F. ; Schennach R. ; Surnev S. ; Netzer F. P. J. Phys. Chem. C 2010, 114, 15432.
doi: 10.1021/jp104620n
9 Liu B. H. ; Boscoboinik J. A. ; Cui Y. ; Shaikhutdinov S. ; Freund H. J. J. Phys. Chem. C 2015, 119, 7842.
doi: 10.1021/acs.jpcc.5b01503
10 Liu B. H. ; McBriarty M. E. ; Bedzyk M. J. ; Shaikhutdinov S. ; Freund H. J. J. Phys. Chem. C 2014, 118, 28725.
doi: 10.1021/jp510069q
11 Deng X. ; Yao K. ; Sun K. ; Li W. X. ; Lee J. ; Matranga C. J. Phys. Chem. C 2013, 117, 11211.
doi: 10.1021/jp402008w
12 Deng X. ; Sorescu D. C. ; Lee J. J. Phys. Chem. C 2016, 120, 8157.
doi: 10.1021/acs.jpcc.6b00862
13 Lee J. ; Sorescu D. C. ; Deng X. J. Phys. Chem. Lett. 2016, 7, 1335.
doi: 10.1021/acs.jpclett.6b00432
14 Shiotari A. ; Liu B. H. ; Jaekel S. ; Grill L. ; Shaikhutdinov S. ; Freund H. J. ; Wolf M. ; Kumagai T. J. Phys. Chem. C 2014, 118, 27428.
doi: 10.1021/jp509013p
15 Liu B. H. ; Groot I. M. N. ; Pan Q. S. ; Shailchutdinov S. ; Freund H. J. Appl. Catal. A 2017, 548, 16.
doi: 10.1016/j.apcata.2017.06.043
16 Schott V. ; Oberhofer H. ; Birkner A. ; Xu M. ; Wang Y. ; Muhler M. ; Reuter K. ; W?ll C. Angew. Chem. Int. Ed. 2013, 52, 11925.
doi: 10.1002/anie.201302315
17 Nilius N. Surf. Sci. Rep. 2009, 64, 595.
doi: 10.1016/j.surfrep.2009.07.004
18 Kuld S. ; Thorhauge M. ; Falsig H. ; Elkj?r C. F. ; Helveg S. ; Chorkendorff I. ; Sehested J. Science 2016, 352, 969.
doi: 10.1126/science.aaf0718
19 Lunkenbein T. ; Schumann J. ; Behrens M. ; Schl?gl R. ; Willinger M. G. Angew. Chem. Int. Ed. 2015, 54, 4544.
doi: 10.1002/anie.201411581
20 Behrens M. ; Studt F. ; Kasatkin I. ; Kühl S. ; H?vecker M. ; Abild-Pedersen F. ; Zander S. ; Girgsdies F. ; Kurr P. ; Kniep B. L. ; et al Science 2012, 336, 893.
doi: 10.1126/science.1219831
21 Kattel S. ; Ramírez P. J. ; Chen J. G. ; Rodriguez J. A. ; Liu P. Science 2017, 355, 1296.
doi: 10.1126/science.aal3573
22 Rodriguez J. A. ; Hrbek J. J. Vac. Sci. Technol. A 1994, 12, 2140.
doi: 10.1116/1.579151
23 Campbell C. T. Surf. Sci. Rep. 1997, 27, 1.
doi: 10.1016/S0167-5729(96)00011-8
24 Evans J. W. ; Thiel P. A. ; Bartelt M. C. Surf. Sci. Rep. 2006, 61, 1.
doi: 10.1016/j.surfrep.2005.08.004
25 Yang F. ; Chen M. S. ; Goodman D. W. J. Phys. Chem. C 2009, 113, 254.
doi: 10.1021/Jp807865w
26 Campbell C. T. ; Parker S. C. ; Starr D. E. Science 2002, 298, 811.
doi: 10.1126/science.1075094
27 Okamoto H. ; Massalski T. B. Bull. Alloy Phase Diagrams 1989, 10, 59.
doi: 10.1007/bf02882177
28 Sano M. ; Adaniya T. ; Fujitani T. ; Nakamura J. Surf. Sci. 2002, 514, 261.
doi: 10.1016/S0039-6028(02)01639-4
29 Yang F. ; Choi Y. ; Liu P. ; Hrbek J. ; Rodriguez J. A. J. Phys. Chem. C 2010, 114, 17042.
doi: 10.1021/jp1029079
30 Jensen F. ; Besenbacher F. ; Stensgaard I. Surf. Sci. 1992, 269, 400.
doi: 10.1016/0039-6028(92)91282-g
31 Bieniek B. ; Hofmann O. T. ; Rinke P. Appl. Phys. Lett. 2015, 106, 131602.
doi: 10.1063/1.4917015
32 Tosoni S. ; Li C. ; Schlexer P. ; Pacchioni G. J. Phys. Chem. C 2017, 121, 27453.
doi: 10.1021/acs.jpcc.7b08781
[1] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[2] 赵烨梁,王兵. 衬底对N@C60分子电子自旋共振谱的影响[J]. 物理化学学报, 2018, 34(12): 1312-1320.
[3] 王岩,李雄,胡善玮,徐倩,鞠焕鑫,朱俊发. Ca掺杂的CeO2模型催化剂的形貌和电子结构及其与CO2分子的相互作用[J]. 物理化学学报, 2018, 34(12): 1381-1389.
[4] 刘强,韩永,曹云君,李小宝,黄武根,余毅,杨帆,包信和,李毅敏,刘志. 利用原位APXPS与STM研究H2在ZnO(10${\rm{\bar 1}}$0)表面的活化[J]. 物理化学学报, 2018, 34(12): 1366-1372.
[5] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[6] 郭瑞,张嘉霖,赵宋焘,余小江,钟舒,孙硕,李震宇,陈伟. 基于全氟酞菁铜和碗烯双分子体系在银和石墨表面自组装行为的低温扫描隧道显微镜研究[J]. 物理化学学报, 2017, 33(3): 627-632.
[7] 王利,石何霞,王文元,施宏,邵翔. 三聚氰胺与蜜勒胺在Au (111)表面的自组装和氢键识别[J]. 物理化学学报, 2017, 33(2): 393-398.
[8] 陈明树. 催化剂活性位本质和构效关系的模型催化研究[J]. 物理化学学报, 2017, 33(12): 2424-2437.
[9] 张小宁,HOLLIMON Valerie,BRODUS DaShan. 硅(111)衬底上直接接枝巯基的方法[J]. 物理化学学报, 2016, 32(9): 2364-2368.
[10] 宋秀能,王广伟,常燕,马勇,王传奎. 1, 1, 2, 3, 4, 5-六苯基硅杂环戊二烯X射线谱的理论研究[J]. 物理化学学报, 2016, 32(4): 943-949.
[11] 叶娟,孙凯,陶敏龙,涂玉兵,谢正波,王亚利,郝少杰,肖华芳,王俊忠. 非手性的酞菁铜分子在Bi(111)表面上的手性特征[J]. 物理化学学报, 2016, 32(10): 2593-2598.
[12] 黄伟新,千坤,邬宗芳,陈士龙. 金催化作用的结构敏感性[J]. 物理化学学报, 2016, 32(1): 48-60.
[13] 顾高臣,李娜,张雪,侯士敏,王永锋,吴凯. 谢尔宾斯基三角分形结构的STM研究[J]. 物理化学学报, 2016, 32(1): 195-200.
[14] 汪宏,张海明,迟力峰. 超高真空条件下表面辅助反应[J]. 物理化学学报, 2016, 32(1): 154-170.
[15] 王利,施宏,刘慧慧,邵翔,吴凯. Mo(001)表面的CaO(001)薄膜模型催化体系的STM研究[J]. 物理化学学报, 2016, 32(1): 183-194.