Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (6): 630-636    DOI: 10.3866/PKU.WHXB201806082
论文     
基于金银合金薄膜的高灵敏度宽光谱表面等离子体共振成像传感器
梁爽1,2,高然1,张萌颖1,薛宁1,祁志美1,*()
1 中国科学院电子学研究所,传感技术国家重点实验室,北京 100190
2 中国科学院大学,北京 100190
Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity
Shuang LIANG1,2,Ran GAO1,Mengying ZHANG1,Ning XUE1,Zhimei QI1,*()
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(2064 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

报道了一种基于金银合金薄膜的宽光谱表面等离子体共振成像(SPRI)传感器,该传感器能够对吸附在薄膜局部或整个表面上的生化分子进行原位定量检测,而且与常规的金膜SPRI传感器相比,检测成本更低,检测灵敏度更高。利用质量比1 : 1的金银合金溅射靶在玻璃基板上淀积了厚约50 nm的均匀的金银合金薄膜。利用实验室自制的Krestchmann结构多功能平台在不同入射角下测试了金银合金薄膜被纯水覆盖后的SPR光谱和SPR彩色图像。基于色相算法计算获得了每个SPR彩像的二维色相分布及其平均色相,从而使得宽光谱SPRI传感器能够利用平均色相作为灵敏度参数进行定量检测。实验确定了平均色相对溶液折射率(RI)变化和分子吸附最为敏感的光谱区间是595–610 nm之间。在这个窄光谱范围内,平均色相与共振波长呈线性关系,其斜率为Δhue/ΔλR = 7.52 nm-1,这意味着基于色相的RI灵敏度是基于共振波长的RI灵敏度的7.52倍,这一结论已被实验证明。将SPRI传感器的起始共振波长设定在色相敏感光谱区间内之后,实验测得基于色相的RI灵敏度为S = 29879 RIU-1,比在相同条件下测得的金膜SPRI的灵敏度高8倍。利用时间分辨宽光谱SPRI方法实时监测了牛血清白蛋白(BSA)分子在金银合金薄膜表面的非特异性吸附,从实验测得的平均色相随时间的变化曲线可知BSA吸附达到平衡所需时间约15 min。研究结果表明,基于金银合金薄膜的SPRI传感器具有动态定量检测蛋白质分子吸附过程的功能。

关键词: 金银合金膜宽光谱SPR成像色相高灵敏度定量    
Abstract:

This paper reports, for the first time, a gold-silver alloy film based broadband spectral surface plasmon resonance imaging (SPRI) sensor that enables in situ quantitative detection of chemical and biological molecules adsorbed on the partial or entire surface of the alloy film. The use of the gold-silver alloy film as the sensing layer makes the SPRI sensor lower in detection cost and higher in detection sensitivity as compared with the conventional sensor with a pure gold film. The gold-silver alloy films of ~50 nm thicknesses were deposited on glass substrates using a sputtering target made of gold (50%)-silver (50%, w, mass fraction) alloy. Both the SPR spectra and SPR color images for the gold-silver alloy films covered with pure water were measured at different incident angles using the laboratory-made Krestchmann-type multifunctional platform. The two-dimensional (2D) hue profile and the average hue for each SPR color image were obtained by calculation with the hue algorithm. Using the average hue as the sensitivity parameter, the spectral SPRI sensor enables quantitative detection. The spectral range in which the average hue is most sensitive to refractive index (RI) changes of bulk solution and to molecular adsorption was determined to be between 595 and 610 nm. In this narrow spectral range the average hue is linearly dependent on the resonant wavelength and its slope (representing the hue variation induced by per unit change in resonant wavelength) is Δhue/ΔλR = 7.52 nm-1, implying that the hue-based RI sensitivity is 7.52 times as high as the wavelength-based RI sensitivity. This implication was experimentally demonstrated in this work. After setting the initial resonant wavelength of the sensor in the hue-sensitive spectral range, the hue-based RI sensitivity of the SPRI sensor was measured to be S = 29879 RIU-1, which is 8 times higher than that obtained with the gold-film SPR chip under the same conditions (S = 3658 RIU-1 for the gold-film SPR chip). Nonspecific adsorption of bovine serum albumin (BSA) molecules on the gold-silver alloy film was monitored in real time by the time-resolved spectral SPRI method, and the temporal change in the average hue was obtained. The time required for BSA adsorption to reach equilibrium is determined to be about 15 min. This study illustrates that the gold-silver alloy film based SPRI sensor has the powerful capability of quantitative detection of sub-monomolecular adsorption of proteins.

Key words: Gold-silver alloy film    Broadband spectral SPR imaging    Hue    High sensitivity    Quantitative
收稿日期: 2018-04-27 出版日期: 2018-06-08
中图分类号:  O647  
基金资助: 国家重点基础研究发展规划项目(973)(2015CB352100);国家自然科学基金(61675203);中科院科研装备研制项目(YZ201508)
通讯作者: 祁志美     E-mail: zhimei-qi@mail.ie.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁爽
高然
张萌颖
薛宁
祁志美

引用本文:

梁爽,高然,张萌颖,薛宁,祁志美. 基于金银合金薄膜的高灵敏度宽光谱表面等离子体共振成像传感器[J]. 物理化学学报, 2019, 35(6): 630-636, 10.3866/PKU.WHXB201806082

Shuang LIANG,Ran GAO,Mengying ZHANG,Ning XUE,Zhimei QI. Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity. Acta Phys. -Chim. Sin., 2019, 35(6): 630-636, 10.3866/PKU.WHXB201806082.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201806082        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I6/630

图1  宽光谱表面等离子体共振成像实验平台示意图
图2  不同入射角度下测得的(a)共振光谱和(b)共振彩像以及共振彩像的二维色相分布; (c)共振彩像的平均色相值与共振波长的依赖关系
图3  (a)不同浓度NaCl水溶液覆盖金银合金薄膜后测得的共振彩像以及计算得到的各彩像的二维色相分布; (b)平均色相与NaCl溶液折射率的依赖关系
图4  (a)不同浓度NaCl水溶液覆盖金银合金薄膜后测得的共振光谱, (b)共振波长与NaCl溶液折射率的依赖关系
图5  (a)由溶液折射率变化导致的共振图像中任意像素点的色相变化量, (b)6 × 6像素点的平均色相随溶液折射率的线性变化关系
图6  (a)在BSA吸附过程中测得的共振彩像以及彩像的二维色相分布, (b)共振彩像的平均色相与吸附时间的依赖关系
1 Yeatman E. ; Ash E. A. Electron. Lett. 1987, 23 (20), 1091.
doi: 10.1049/el:19870762
2 Rothenh?usler B. ; Knoll W. Nature 1988, 332 (6165), 615.
doi: 10.1038/332615a0
3 Gobi K. V. ; Tanaka H. ; Shoyama Y. ; Miura N. Biosens. Bioelectron. 2004, 20 (2), 350.
doi: 10.1016/j.bios.2004.02.003
4 Gifford L. K. ; Sendroiu I. E. ; Corn R. M. ; Lupták A. J. Am. Chem. Soc. 2010, 132 (27), 9265.
doi: 10.1021/ja103043p
5 Zhou W. J. ; Halpern A. R. ; Seefeld T. H. ; Corn R. M. Anal. Chem. 2012, 84 (1), 440.
doi: 10.1021/ac202863k
6 Yuk J. S. ; Kim H. S. ; Jung J. W. ; Jung S. H. ; Lee S. J. ; Kim W. J. ; Han J. A. ; Kim Y. M. ; Ha K. S. Biosens. Bioelectron. 2008, 21 (8), 1521.
doi: 10.1016/j.bios.2005.07.009
7 Knobloch H. ; Woigk S. ; Helms A. ; Brehmer L. Appl. Phys. Lett. 1996, 69 (16), 2336.
doi: 10.1063/1.117516
8 Andersson O. ; Ulrich C. ; Bj refors F. ; Liedberg B. Sens. Actuators B 2008, 134 (2), 545.
doi: 10.1016/j.snb.2008.05.042
9 Beusink J. B. ; Lokate A. M. ; Besselink G. A. ; Pruijn G. J. ; Schasfoort R. B. Biosens. Bioelectron. 2008, 23 (6), 839.
doi: 10.1016/j.bios.2007.08.025
10 Zhang P. ; Liu L. ; He Y. ; Shen Z. Y. ; Guo J. Appl. Opt. 2014, 53 (26), 6037.
doi: 10.1364/AO.53.006037
11 Ho H. P. ; Wong C. L. ; Chan K. S. ; Wu S. Y. ; Lin C. Appl. Opt. 2006, 45 (23), 5819.
doi: 10.1364/AO.45.005819
12 Smith A. R. Acm Siggraph Computer Graphics 1978, 12 (3), 12.
doi: 10.1145/800248.807361
13 Liang J. Q. ; Cui D. F. ; Cai H. Y. ; Wang J. B. ; Wang Y. J. Transd. Microsys. Technol. 2006, 25 (10), 57.
doi: 10.3969/j.issn.1000-9787.2006.10.019
梁金庆; 崔大付; 蔡浩原; 王军波; 王于杰. 传感器与微系统, 2006, 25 (10), 57.
doi: 10.3969/j.issn.1000-9787.2006.10.019
14 Liu W. ; Chen Y. Chem. J. Chin. Univ. 2008, 29 (9), 1744.
doi: 10.3321/j.issn:0251-0790.2008.09.008
刘巍; 陈义. 高等学校化学学报, 2008, 29 (9), 1744.
doi: 10.3321/j.issn:0251-0790.2008.09.008
15 Yu X. L. ; Wang D. X. ; Yan Z. B. Sens. Actuators B 2003, 91 (1-3), 285.
doi: 10.1016/S0925-4005(03)00105-9
16 Yu X. L. ; Ding X. ; Liu F. ; Deng Y. Sens. Actuators B 2008, 130 (1), 52.
doi: 10.1016/j.snb.2007.07.106
17 Shen, G. Y.; Chen, Y.; Zhang, Y. M.; Chen, Y.; Cui, J. Prog. Chem. 2010, 22 (8), 1648.
申刚义,陈义,张轶鸣,崔箭.化学进展, 2010, 22 (8), 1648.
18 Shen G. Y. ; Han Z. Q. ; Liu W. ; Chen Y. Chem. J. Chin. Univ. 2007, 28 (9), 1651.
doi: 10.3321/j.issn:0251-0790.2007.09032
申刚义; 韩志强; 刘巍; 陈义. 高等学校化学学报, 2007, 28 (9), 1651.
doi: 10.3321/j.issn:0251-0790.2007.09032
19 Fan Z.B. ; Gong X. Q. ; Lu D. F. ; Gao R. ; Deng Y. H. ; Qi Z. M. Chin. J. Liq. Crys. Disp. 2017, 32 (5), 402.
doi: 10.3788/YJYXS20173205.0402
范智博; 龚晓庆; 逯丹凤; 高然; 邓耀华; 祁志美. 液晶与显示, 2017, 32 (5), 402.
doi: 10.3788/YJYXS20173205.0402
20 Fan Z. B. ; Gong X. Q. ; Lu D. F. ; Gao R. ; Qi Z. M. Acta Phys. -Chim. Sin. 2017, 33 (5), 1001.
doi: 10.3866/PKU.WHXB201701131
范智博; 龚晓庆; 逯丹凤; 高然; 祁志美. 物理化学学报, 2017, 33 (5), 1001.
doi: 10.3866/PKU.WHXB201701131
21 Hodnik V. ; Anderluh G. Sensors 2009, 9 (3), 1339.
doi: 10.3390/s9031339
22 Alleyne C. J. ; Kirk A. G. ; McPhedran R. C. ; Nicorovici N. A. P. ; Maystre D. Opt. Express. 2007, 15 (13), 8163.
doi: 10.1364/OE.15.008163
23 Manickam G. ; Gandhiraman R. ; Vijayaraghavan R. K. ; Kerr L. ; Doyle C. ; Williams D. E. ; Daniels S. Analyst 2012, 137, 5265.
doi: 10.1039/c2an35826c
24 Zhang Z. ; Liu J. ; Lu D. F. ; Qi Z. M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1771.
doi: 10.3866/PKU.WHXB201407071
张喆; 刘杰; 逯丹凤; 祁志美. 物理化学学报, 2014, 30 (9), 1771.
doi: 10.3866/PKU.WHXB201407071
25 Zhang Z. ; Liu Q. ; Qi Z. M. Acta Phys. Sin. 2013, 62 (6), 81.
doi: 10.7498/aps.62.060703
张喆; 柳倩; 祁志美. 物理学报, 2013, 62 (6), 81.
doi: 10.7498/aps.62.060703
26 Liu D. L. ; Zhao Q. ; Lu D. F. ; Qi Z. M. Chem. J. Chin. Univ. 2014, 35 (10), 2207.
doi: 10.7503/cjcu20140297
刘德龙; 赵乔; 逯丹凤; 祁志美. 高等学校化学学报, 2014, 35 (10), 2207.
doi: 10.7503/cjcu20140297
[1] 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[2] 王丽,逯丹凤,高然,程进,张喆,祁志美. 纳米多孔金膜表面等离子体共振效应的理论分析和传感应用[J]. 物理化学学报, 2017, 33(6): 1223-1229.
[3] 白光月,刘君玲,王九霞,王玉洁,李艳娜,赵扬,姚美焕. 阳离子双子表面活性剂诱导的α-CT超活性和构象变化[J]. 物理化学学报, 2017, 33(5): 976-983.
[4] 范智博,龚晓庆,逯丹凤,高然,祁志美. 基于色相算法的表面等离子体共振成像传感器对苯并芘的敏感特性[J]. 物理化学学报, 2017, 33(5): 1001-1009.
[5] 袁威津,董珍,赵龙,于天麟,翟茂林. γ辐射下CMPO/[C2mim][NTf2]的辐解及其对Eu3+萃取的影响[J]. 物理化学学报, 2016, 32(8): 2101-2107.
[6] 谢湖均,刘程程,孙强,顾青,雷群芳,方文军. 季铵盐型阳离子表面活性剂与牛血清白蛋白的相互作用[J]. 物理化学学报, 2016, 32(12): 2951-2960.
[7] 林峰,付新梅,王超,蒋思宇,王景辉,张述伟,杨凌,李燕. 3C-like蛋白酶抑制剂的构效关系、分子对接和分子动力学[J]. 物理化学学报, 2016, 32(11): 2693-2708.
[8] 唐青龙, 张鹏, 刘海峰, 尧命发. 利用激光诱导炽光法定量测量柴油机缸内燃烧过程碳烟体积分数[J]. 物理化学学报, 2015, 31(5): 980-988.
[9] 刘海春,卢帅,冉挺,张艳敏,徐金星,熊潇,徐安阳,陆涛,陈亚东. 基于分子对接和QSAR方法预测B-Raf II型抑制剂活性[J]. 物理化学学报, 2015, 31(11): 2191-2206.
[10] 刘芬, 邹建卫, 胡桂香, 蒋勇军. 有机污染物在碳纳米管吸附的定量结构-性质关系[J]. 物理化学学报, 2014, 30(9): 1616-1624.
[11] 赵乔, 逯丹凤, 陈晨, 祁志美. 介孔SiO2薄膜增敏SERS基底在消逝波激励下的特性表征[J]. 物理化学学报, 2014, 30(12): 2335-2341.
[12] 韩娜, 袁哲明, 陈渊, 代志军, 王志明. 基于高维特征非线性筛选的HLA-A*0201限制性CTL表位预测[J]. 物理化学学报, 2013, 29(09): 1945-1953.
[13] 娄朋晓, 王玉洁, 白光月, 范朝英, 王毅琳. 表面活性剂分子间弱相互作用的直接能量表征——高灵敏等温滴定量热法[J]. 物理化学学报, 2013, 29(07): 1401-1407.
[14] 孙磉礅, 米思奇, 游靖, 余吉良, 胡松青, 刘新泳. 苯并咪唑类缓蚀剂的HQSAR研究及分子设计[J]. 物理化学学报, 2013, 29(06): 1192-1200.
[15] 张喆, 逯丹凤, 祁志美. 纳米多孔金薄膜的表面等离子体共振传感特性[J]. 物理化学学报, 2013, 29(04): 867-873.