Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (6): 644-650    DOI: 10.3866/PKU.WHXB201805068
论文     
ZnO纳米棒阵列到纳米管结构的自转化机制及其在相变封装材料中的应用
冯英杰1,王进平2,刘丽丽1,王习东1,*()
1 北京大学工学院,北京 100871
2 中国石化北京化工研究院,北京 100013
Self-Conversion from ZnO Nanorod Arrays to Tubular Structures and Their Applications in Nanoencapsulated Phase-Change Materials
Yingjie FENG1,Jinping WANG2,Lili LIU1,Xidong WANG1,*()
1 College of Engineering, Peking University, Beijing 100871, P. R. China
2 Beijing Research Institute of Chemical Industry, SINOPEC, Beijing 100013, P. R. China
 全文: PDF(3962 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

基于极性晶体的晶面能理论,不添加任何辅助添加剂,本论文仅通过调节水热结晶条件实现了对ZnO纳米管阵列结构的可控合成。通过晶体表面能计算表明,具有Zn终端的[0001]面由于具有较高的表面能,属于不稳定晶面。因此,随着生长结晶过程的进行,为了最终达到系统的低能量稳定状态,ZnO纳米棒的顶面[0001]面会逐渐优先溶解,并最终形成管状结构。其中,与晶面能紧密相关的溶解结晶平衡浓度是影响管状结构形成的重要因素。本论文通过确定水热生长条件下,ZnO纳米棒向纳米管结构转变的临界浓度,成功验证了由棒状结构向管状结构的自转化机理并缩短了管状结构的转化时间。由于ZnO纳米管阵列优秀的传导性能和可填充性,以及对基底材料的广泛适用性等特点,本研究进一步将其应用在相变材料的封装领域。实验结果表明,ZnO纳米管阵列薄膜封装相变材料表现出更好的热传导性能和储放热性能,在恒温器件领域展现出良好的应用潜力。

关键词: ZnO纳米管表面能溶解结晶平衡自转化相变封装材料    
Abstract:

In the emerging field of nanoscience, tubular structures have been attracting remarkable interest due to their well-defined geometry, high specific area, and exceptional physical and chemical properties. Among them, oriented ZnO tubular arrays are regarded as promising candidates for various applications such as optoelectronics, solar cells, sensors, field emission, piezoelectrics, and catalysis. Although template-directed and selective dissolution synthesizing strategies are commonly used to prepare ZnO nanotubes, repeatability and large scale preparation are still challenging. In this study, ZnO nanotube arrays were controllably prepared by tuning the hydrothermal parameters, without the use of any additives. The mechanism underlying the self-conversion of ZnO nanorods to nanotubes was comprehensively studied based on the surface energy theory. It has been proved that the metastable top surface of the ZnO nanorods dissolves preferentially to reach a stable state during the hydrothermal growth. The specific surface energy of different crystal faces of ZnO nanorods was calculated using molecular dynamics simulation. The top surface of the ZnO nanorod, the Zn-terminated [0001] face, demonstrated much higher surface free energy than did the lateral faces, which indicated that the self-dissolution of top face (002) is energetically favorable. The self-conversion behavior of ZnO nanorod arrays with different diameters was specifically investigated by adjusting the initial precursor concentration, density of the crystal seed layers, and growth time. The dissolution-crystallization equilibrium concentration, determined by crystal surface energy, was found to be a key factor for the formation of the tubular structure. Notably, the critical equilibrium conditions for the self-conversion of ZnO nanorods to nanotubes, including zinc ion concentration and pH, have been identified by studying parameters corresponding to the dissolution-crystallization equilibrium for the metastable top surface of the ZnO nanorods. The preparation of the ZnO nanotube arrays was successfully accelerated and simplified via two-step procedure: (1) preparation of ZnO nanorod arrays and (2) self-conversion of ZnO nanorods to nanotubes. The preparation method based on the self-conversion mechanism from rods to tubes for polar oxides is simpler and more easily controllable as compared to the reported methods involving variety of additives. Because of the advantages of adaptability to a wide range of substrates, excellent conducting properties, and filling ability, the prepared ZnO nanotube array films were used in encapsulating phase-change materials. The encapsulated phase-change material exhibited excellent heat storage/release properties and heat conductivities. This indicates the potential application of precision devices for temperature control.

Key words: ZnO nanotubes    Crystal surface energy    Dissolution-crystallization equilibrium    Self-conversion    Encapsulated phase-change materials
收稿日期: 2018-05-24 出版日期: 2018-07-09
中图分类号:  O647  
基金资助: 51472006(北京市公共发展基金及国家自然科学基金)
通讯作者: 王习东     E-mail: xidong@pku.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯英杰
王进平
刘丽丽
王习东

引用本文:

冯英杰,王进平,刘丽丽,王习东. ZnO纳米棒阵列到纳米管结构的自转化机制及其在相变封装材料中的应用[J]. 物理化学学报, 2019, 35(6): 644-650, 10.3866/PKU.WHXB201805068

Yingjie FENG,Jinping WANG,Lili LIU,Xidong WANG. Self-Conversion from ZnO Nanorod Arrays to Tubular Structures and Their Applications in Nanoencapsulated Phase-Change Materials. Acta Phys. -Chim. Sin., 2019, 35(6): 644-650, 10.3866/PKU.WHXB201805068.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805068        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I6/644

Fig 1  SEM images of ZnO nanorod and nanotube arrays obtained at growth time of (a) 12 h, (b) 24 h, (c) 36 h, (d) 60 h Preparation condition: the initial precursor solution concentration of 0.2 mol·L-1 and coating colloid solution of 0.01 mol·L-1
Fig 2  XRD patterns of oriented ZnO nanorod arrays (black) and nanotube (red) arrays
Fig 3  View of ZnO crystal structures along different crystallographic directions (O, pink and Zn, brown)
Fig 4  SEM images of ZnO nanorod and nanotube arrays obtained at growth time of (a) 12 h, (b) 24 h, (c) 36 h, (d) 60 h Preparation condition: the initial precursor solution concentration of 0.25 mol·L-1 and coating colloid solution of 0.01 mol·L-1
Fig 5  SEM images of ZnO nanorod and nanotube arrays obtained at (a) 12 h, (b) 60 h with the precursor solution concentration of 0.3 mol·L-1 and coating colloid solution of 0.01 mol·L-1. (c) and (d) represent the side profiles of ZnO nanorod arrays and nanotube array
Fig 6  (a) TEM image and (b) HRTEM image of ZnO nanotube arrays obtained after 60 h reaction with the precursor concentration of 0.3 mol·L-1
Fig 7  (a) TEM and (b) HRTEM images of etched ZnO obtained with the precursor concentration of 0.2 mol·L-1 after 24 h hydrothermal growth; (c) TEM and (d) HRTEM images of ZnO tube obtained after 60 h hydrothermal growth
Precursor concentration/(mol·L-1)Diameter/nmEtched Length/μmStart etch time/hStart etch concentration(Zn2+)/(mol·L-1)pH
0.15350
0.25001240.01085.8
0.256502200.01195.8
0.310004-5120.01275.8
Table 1  Critical parameters for the samples obtained at each condition
Fig 8  SEM images of ZnO nanotube arrays obtained with Zn2+ 0.01 mol·L-1 and pH = 5.8, based on ZnO nanorod arrays obtained with the concentrations of precursor solution (a) 0.2 mol·L-1, (b) 0.25 mol·L-1 and (c) 0.3 mol·L-1
Fig 9  (a) Low magnified and (b) large magnified SEM images of ZnO nanotube arrays embedded with melt paraffin. (c) Low magnified and (d) large magnified SEM images of ZnO nanotube arrays embedded with solid paraffin
Fig 10  DSC curves of ZnO nanotube arrays encapsulating phase-change material (a) paraffin 1# (30% (w, mass fraction)) and prinstine paraffin; (b) paraffin 2# (40%, w) and prinstine paraffin
1 (a) Greyson, E. C.; Babayan, Y.; Odom, T. W. Adv. Mater. 2004, 16, 1348. doi: 10.1002/adma.200400765
(b) Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. Nano Lett. 2005, 5, 1231. doi: 10.1021/nl050788p
2 Sun Y. ; Fuge G. M. ; Fox N. A. ; Riley D. J. ; Ashfold M. N. R. Adv. Mater. 2005, 17, 2477.
doi: 10.1002/adma.200500726
3 (a) Pan, Z. X.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947. doi: 10.1126/science.1058120
(b) Wen, X. G.; Fang, Y. P.; Pang, Q.; Yang, C. L.; Wang, J. N.; Ge, W. K.; Wong, K. S.; Yang, S. H. J. Phys. Chem. B 2005, 109, 15303. doi: 10.1021/jp052466f
4 (a) Gao, P. X.; Wang, Z. L. J. Am. Chem. Soc. 2003, 125, 11299. doi: 10.1021/ja035569p
(b) Li, G. R.; Lu, X. H.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Cryst. Growth Des. 2008, 8, 1276. doi: 10.1021/cg7009995
5 (a) Konenkamp, R.; Word, R. C.; Godinez, M. Nano Lett. 2005, 5, 2005. doi: 10.1021/nl051501r
(b) Flemban, T. H.; Haque, M. A.; Ajia, I.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I. S. ACS Appl. Mater. Interfaces 2017, 9, 37120. doi: 10.1021/acsami.7b09645
6 (a) Valls, I. G.; Cantu, M. L. Energy Environ. Sci. 2009, 2, 19. doi: 10.1002/adma.200400765
(b) Martinson, A. B.; Elam, J. W.; Hupp, J. T.; Pelin, M. J. Nano Lett. 2007, 7, 2183. doi: 10.1021/nl070160+
7 (a) Yang, K.; She, G. W.; Wang, H.; Ou, X. M.; Zhang, X. H.; Lee, C. S.; Lee, S. T. J. Phys. Chem. C 2009, 113, 20169. doi: 10.1021/jp901894j
(b) Huang, Y. C.; Chang, S. Y.; Jehng, J. M. J. Phys. Chem. C 2017, 121, 19063. doi: 10.1021/acs.jpcc.7b05806
8 (a) Ye, C.; Bando, Y.; Fang, X.; Shen, G.; Goldberg, D. J. Phys. Chem. C 2007, 111, 12673. doi: 10.1021/jp073928n
(b) Wang, X.; Zhou, J.; Lao, C.; Song, J.; Xu, N.; Wang, Z. L. Adv. Mater. 2007, 19, 1627. doi: 10.1002/adma.200602467
9 (a) Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Science 2007, 316, 102. doi: 10.1126/science.1139366
(b) Lu, M. P.; Song, J. H.; Lu, M. Y.; Chen, M. T.; Gao, Y. F.; Chen, L. J.; Wang, Z. L. Nano Lett. 2009, 9, 1223. doi: 10.1021/nl900115y
10 Chouhan N. ; Yeh C. L. ; Hu S. F. ; Liu R. S. ; Chang W. S. ; Chene K. H. Chem. Comm. 2011, 47, 3493.
doi: 10.1039/C0CC05548D
11 Zhao X. F. ; Chen H. ; Wu H. ; Wang R. ; Cui Y. ; Fu Q. ; Yang F. ; Bao X. H. Acta Phys. -Chim. Sin. 2018, 34, 1373.
doi: 10.3866/PKU.WHXB201804131
赵新飞; 陈浩; 吴昊; 王睿; 崔义; 傅强; 杨帆; 包信和. 物理化学学报, 2018, 34, 1373.
doi: 10.3866/PKU.WHXB201804131
12 Elias J. ; Tena-Zaera R. ; Wang Y. S. ; Lévy-Clément C. Chem. Mater. 2008, 20, 6633.
doi: 10.1021/cm801131t
13 Xu L. F. ; Liao Q. ; Zhang J. P. ; Ai X. C. ; Xu D. S. J. Phys. Chem. C 2007, 111, 4549.
doi: 10.1021/jp068485m
14 Li G. R. ; Lu X. H. ; Zhao W. X. ; Su C. Y. ; Tong Y. X. Cryst. Growth Des. 2008, 8, 1276.
doi: 10.1021/cg7009995
15 Fujimura N. ; Nishihara T. ; Goto S. ; Xu J. F. ; Ito T. J. Cryst. Growth 1993, 130, 269.
doi: 10.1016/0022-0248(93)90861-P
16 Wang Z. L. ; Kong X. Y. ; Zuo J. M. Phys. Rev. Lett. 2003, 91, 185502.
doi: 10.1103/PhysRevLett.91.185502
17 Yu H. D. ; Zhang Z. P. ; Han M. Y. ; Hao X. T. ; Zhu F. R. J. Am. Chem. Soc. 2005, 127, 2378.
doi: 10.1021/ja043121y
18 Zhang B. P. ; Binh N. T. ; Wakatsuki K. ; Segawa Y. ; Yamada Y. ; Usami N. ; Kawasaki M. ; Koinuma H. J. Phys. Chem. B 2004, 108, 10899.
doi: 10.1021/jp048602i
19 Vayssieres L. ; Keis K. ; Hagfeldt A. ; Lindquist S. E. Chem. Mater. 2001, 13, 4395.
doi: 10.1021/cm011160s
20 Matijevi? E. Langmuir 1994, 10, 8.
doi: 10.1021/la00013a003
21 Vayssieres L. Adv. Mater. 2003, 15, 464.
doi: 10.1002/adma.200390108
22 Pardeshi S. K. ; Patil A. B. J. Hazard. Mater. 2009, 163, 403.
doi: 10.1016/j.jhazmat.2008.06.111
23 Chu D. W. ; Masuda Y. ; Ohji T. ; Kato K. Langmuir 2010, 26, 2811.
doi: 10.1021/la902866a
24 Mondal S. Appl. Therm. Eng. 2008, 28, 1536.
doi: 10.1016/j.applthermaleng.2007.08.009
25 Wu S. Y. ; Zhu D. S. ; Zhang X. R. ; Huang J. Energy Fuels 2010, 24, 1894.
doi: 10.1021/ef9013967
[1] 张莉莉, 韩培德, 张彩丽, 董明慧, 杨艳青, 古向阳. MgF2表面结构稳定性及电子特性的密度泛函理论研究[J]. 物理化学学报, 2011, 27(07): 1609-1614.
[2] 刘建才, 张新明, 陈明安, 唐建国, 刘胜胆. 密度泛函理论预测微量元素在Al(100)表面的偏聚[J]. 物理化学学报, 2009, 25(12): 2519-2523.
[3] 陈卫平;冯新;王昌松;孙盛华;陆小华. 钛酸钾晶须界面性质研究[J]. 物理化学学报, 2004, 20(08): 868-870.