Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (6): 591-597    DOI: 10.3866/PKU.WHXB201806042
论文     
煤油裂解产物/空气与煤油/空气在宽温度范围内点火延迟的对比研究
王易君,张德翔,万中军,李萍*(),张昌华
A Comparative Study of Ignition Delay of Cracked Kerosene/Air and Kerosene/Air over a Wide Temperature Range
Yijun WANG,Dexiang ZHANG,Zhongjun WAN,Ping LI*(),Changhua ZHANG
 全文: PDF(1895 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

煤油是一种理想的吸热性碳氢燃料,其热裂解在高速飞行器的热防护中起着重要作用。本工作利用加热激波管测量了煤油裂解产物/空气和煤油/空气的点火延时,点火温度657–1333 K,化学计量比1.0,点火压力1.01 × 105–10.10 × 105 Pa。通过对高温点火延时数据的拟合获得了两种混合物关于点火延时间和点火条件(温度和压力)的Arrhenius型关系。测量结果显示,在高温区(> 1000 K)两种混合物的点火延时很接近,并且点火延时随着温度或压力的增加而变短。但在低温区(< 1000 K),两种混合物的点火延迟特性却非常不同。煤油裂解产物的点火延时在此低温区域仍然随着温度的减小而增长,没有出现着火延迟的负温度效应;煤油的点火延迟在此温度区域却表现出明显的负温度效应。在830–1000 K温度区间,煤油裂解产物的点火延时快于煤油的;当温度低于830 K时,煤油的点火延迟时却变得比煤油裂解产物的快很多。本实验结果与机理模拟结果的比较显示,对煤油裂解产物和煤油燃烧反应机理的完善是必要的。本研究结果对了解煤油裂解产物的点火延迟特性和发展高速飞行器再生冷却技术非常有帮助。

关键词: 煤油裂解产物煤油火延迟时间加热激波管    
Abstract:

Kerosene is an ideal endothermic hydrocarbon. Its pyrolysis plays a significant role in the thermal protection for high-speed aircraft. Before it reacts, kerosene experiences thermal decomposition in the heat exchanger and produces cracked products. Thus, to use cracked kerosene instead of pure kerosene, knowledge of their ignition properties is needed. In this study, ignition delay times of cracked kerosene/air and kerosene/air were measured in a heated shock tube at temperatures of 657–1333 K, an equivalence ratio of 1.0, and pressures of 1.01 × 105–10.10 × 105 Pa. Ignition delay time was defined as the time interval between the arrival of the reflected shock and the occurrence of the steepest rise of excited-state CH species (CH*) emission at the sidewall measurement location. Pure helium was used as the driver gas for high-temperature measurements in which test times needed to be shorter than 1.5 ms, and tailored mixtures of He/Ar were used when test times could reach up to 15 ms. Arrhenius-type formulas for the relationship between ignition delay time and ignition conditions (temperature and pressure) were obtained by correlating the measured high-temperature data of both fuels. The results reveal that the ignition delay times of both fuels are close, and an increase in the pressure or temperature causes a decrease in the ignition delay time in the high-temperature region (> 1000 K). Both fuels exhibit similar high-temperature ignition delay properties, because they have close pressure exponents (cracked kerosene: τignP-0.85; kerosene:τignP-0.83) and global activation energies (cracked kerosene: Ea = 143.37 kJ·mol-1; kerosene: Ea = 144.29 kJ·mol-1). However, in the low-temperature region (< 1000 K), ignition delay characteristics are quite different. For cracked kerosene/air, while the decrease in the temperature still results in an increase in the ignition delay time, the negative temperature coefficient (NTC) of ignition delay does not occur, and the low-temperature ignition data still can be correlated by an Arrhenius-type formula with a much smaller global activation energy compared to that at high temperatures. However, for kerosene/air, this NTC phenomenon was observed, and the Arrhenius-type formula fails to correlate its low-temperature ignition data. At temperatures ranging from 830 to 1000 K, the cracked kerosene ignites faster than the kerosene; at temperatures below 830 K, kerosene ignition delay times become much shorter than those of cracked kerosene. Surrogates for cracked kerosene and kerosene are proposed based on the H/C ratio and average molecular weight in order to simulate ignition delay times for cracked kerosene/air and kerosene/air. The simulation results are in fairly good agreement with current experimental data for the two fuels at high temperatures (> 1000 K). However, in the low-temperature NTC region, the results are in very good agreement with kerosene ignition delay data but disagree with cracked kerosene ignition delay data. The comparison between experimental data and model predictions indicates that refinement of the reaction mechanisms for cracked kerosene and kerosene is needed. These test results are helpful to understand ignition properties of cracked kerosene in developing regenerative cooling technology for high-speed aircraft.

Key words: Cracked kerosene    Kerosene    Ignition delay time    Heated shock tube
收稿日期: 2018-06-21 出版日期: 2018-08-13
中图分类号:  O643  
基金资助: 国家重点研发计划(2017YFB0202400);国家重点研发计划(2017YFB0202401)
通讯作者: 李萍     E-mail: lpscun@scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王易君
张德翔
万中军
李萍
张昌华

引用本文:

王易君,张德翔,万中军,李萍,张昌华. 煤油裂解产物/空气与煤油/空气在宽温度范围内点火延迟的对比研究[J]. 物理化学学报, 2019, 35(6): 591-597, 10.3866/PKU.WHXB201806042

Yijun WANG,Dexiang ZHANG,Zhongjun WAN,Ping LI,Changhua ZHANG. A Comparative Study of Ignition Delay of Cracked Kerosene/Air and Kerosene/Air over a Wide Temperature Range. Acta Phys. -Chim. Sin., 2019, 35(6): 591-597, 10.3866/PKU.WHXB201806042.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201806042        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I6/591

Fig 1  Experimental setup
Fig 2  A representative ignition delay time in current work
Φ Xgas Xliquid XO2 XN2
1.0 1.20 0.21 20.70 77.89
Table 1  Composition (%, in molar fraction) of cracked kerosene/air mixture at the stoichiometric condition
Cracked kerosene Kerosene
T/K 10-5P/Pa τign/μs T/K 10-5P/Pa τign/μs T/K 10-5P/Pa τign/μs
1166 3.09 916 1233 1.19 969 928 11.86 3034
1320 3.04 181 1279 1.03 706 919 11.53 3608
1278 3.20 300 1331 1.01 341 915 1 0.68 3212
1215 3.00 510 1353 0.96 218 891 1 0.62 5552
1354 3.13 113 1370 1.01 210 866 10.50 5221
1 390 3.16 72 1398 1.06 138 838 11.79 4912
1348 5.42 80 1270 4.85 232 830 11.39 3824
1 093 5.19 1576 1222 4.53 336 811 10.79 3748
1163 5.01 680 1333 5.26 1 08 787 1 0.48 3544
1255 5.09 238 1248 5.10 286 749 9.41 3488
1341 5.14 84 1212 5.26 397 744 1 0.29 3792
1184 4.70 602 1176 5.19 523 714 1 2.61 3692
1268 4.96 201 1131 5.17 998 700 11.04 4034
1333 11.11 45 1237 9.77 117 677 1 0.64 6354
1087 9.30 907 1299 10.28 61 657 1 0.47 8708
1226 10.8 186 1179 9.79 300
1178 1 0.13 274 1139 9.63 491
1277 11.00 96 1083 9.21 848
1153 1 0.27 430 1192 9.73 264
1025 10.56 1116 1215 11.24 181
764 10.5 7708 1199 10.05 256
810 1 0.19 5474 1144 10.65 333
822 1 0.05 4794 1113 11.05 480
841 1 0.00 4574 1101 11.58 565
865 9.70 3674 1050 1 0.1 6 947
773 1 0.40 7514 1044 10.34 1104
898 1 0.64 3320 1025 10.31 1154
921 1 0.14 2280 1008 9.95 1465
755 10.55 8880 978 12.02 1516
731 1 0.48 8640 968 12.00 1712
949 10.4 1932 958 11.8 2244
Table 2  Ignition delay time raw data for both fuels at Φ = 1.0
Fig 3  High temperature ignition delay times of cracked kerosene/air and kerosene/air Symbols present current data. Lines present the results of Eqs. (2) and (3).
Fig 4  Current ignition delay times of cracked kerosene /air and kerosene/air
Fig 5  Ignition delay times of small species from Kalyan et al. 18 at 10.10 × 105 Pa and Φ = 1.0
Component Kerosene Cracked kerosene
n-dodecane 89
1, 2, 4-trimethylbenzene 11
n-decane 5.35
benzene 9.65
hydrogen 26
methane 23
ethane 12
ethylene 12
propane 4
propylene 8
Table 3  The components (%, molar fraction) of surrogates for cracked kerosene and kerosene
Fig 6  Comparison of measured data (symbols) with simulated results (lines) of Malewicki 19 mechanism at the stoichiometric condition
Fig 7  Comparison of measured data with simulated results of Malewicki 19 mechanism at wide temperature region
1 Huang H. ; Spadaccini L. J. ; Sobel D. R. J. Eng. Gas Turbines Power. 2004, 126, 284.
doi: 10.1115/1.1689361
2 Zhong F. Q. ; Fan X. J. ; Yu G. ; Li J. G. Sci China, Ser. E. 2009, 52, 2644.
doi: 10.1007/s11431-009-0090-8
3 Fry R. S. J. Propul. Power 2004, 20, 27.
doi: 10.2514/1.9178
4 Liu S. ; Zhang B. M. Sci. Technol. 2011, 15, 526.
doi: 10.1016/j.ast.2010.08.001
5 Ning H. B. ; Li Z. R. ; Li X. Y. Acta Phys. -Chim. Sin. 2016, 32, 131.
doi: 10.3866/PKU.WHXB201512151
甯红波; 李泽荣; 李象远. 物理化学学报, 2006, 32, 131.
doi: 10.3866/PKU.WHXB201512151
6 Puri P. ; Ma F. H. ; Choi J.-Y. ; Yong V. Combust. Flame 2005, 142, 454.
doi: 10.1016/j.combustflame.2005.06.001
7 Xu S. L. ; Liao Q. Proc. Eng. 2015, 99, 338.
doi: 10.1016/j.proeng.2014.12.544
8 Castaldi, M.; Leylegian, J. C.; Chinitz, W.; Modroukas, D. Development of an Effective Endothermic Fuel Platform for Regeneratively-Cooled Hypersonic Vehicles. In the American Institute of Aeronautics and Astronautics, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, CA, USA, July 9–12, 2006. doi: 10.2514/6.2006-4403
9 Zhang C. H. ; Li B. ; Rao F. ; Li P. ; Li X. Y. Proc. Combust. Inst. 2015, 35, 3151.
doi: 10.1016/j.proci.2014.05.017
10 Rao F. ; Li B. ; Li P. ; Zhang C. H. ; Li X. Y. Energy Fuel. 2014, 28, 6707.
doi: 10.1021/ef500585m
11 Yong K. L. ; He J. N. ; Zhang W. F. ; Xian L. Y. ; Zhang C. H. ; Li P. ; Li X. Y. Fuel 2017, 188, 567.
doi: 10.1016/j.fuel.2016.09.054
12 He J. N. ; Gou Y. D. ; Lu P. F. ; Zhang C. H. ; Li P. ; Li X. Y. Combust. Flame 2018, 192, 358.
doi: 10.1016/j.combustflame.2018.02.002
13 Zhukov V. P. ; Sechenov V. A. ; Starikovskiy A. Y. Fuel 2014, 126, 169.
doi: 10.1016/j.fuel.2014.02.036
14 Davidson D. F. ; Zhu Y. ; Shao J. ; Hanson R. K. Fuel 2017, 187, 26.
doi: 10.1016/j.fuel.2016.09.047
15 Akih-Kumgeh B. ; Bergthorson J. M. Combust. Flame 2011, 158, 1037.
doi: 10.1016/j.combustflame.2010.10.021
16 Liang W. K. ; Law C. K. Combust. Flame 2018, 118, 162.
doi: 10.1016/j.combustflame.2017.10.003
17 Ji W. Q. ; Zhao P. ; He T. J. ; He X. ; Farooq A. ; Law C. K. Combust. Flame 2016, 164, 294.
doi: 10.1016/j.combustflame.2015.11.028
18 Kalyan K. ; Andreas G. ; Friedrich D. Fuel 2018, 222, 859.
doi: 10.1016/j.fuel.2018.02.064
19 Malewicki T. ; Gudiyella S. ; Brezinsky K. Combust. Flame 2013, 160, 17.
doi: 10.1016/j.combustflame.2012.09.013
20 Dooley S. ; Won S. H. ; Chaos M. ; Heyne J. ; Ju Y. G. ; Dryer F. L. ; Kumar K. ; Sung C. -J. Wang H. W. Oehlschlaeger M. A. ; et al Combust. Flame 2010, 157, 2333.
doi: 10.1016/j.combustflame.2010.07.001
21 Narayanaswamy K. ; Pitsch H. ; Pepiot P. Combust. Flame 2016, 165, 288.
doi: 10.1016/j.combustflame.2015.12.013
22 Egolfopoulos F. N. ; Zhang H. ; Zhang Z. Combust. Flame 1997, 109, 237.
doi: 10.1016/S0010-2180(96)00152-6
[1] 席双惠,王繁,李象远. 典型燃料点火延迟时间的一阶和二阶局部和全局敏感度分析[J]. 物理化学学报, 2019, 35(2): 167-181.
[2] 卢鹏飞,苟于单,何九宁,李萍,张昌华,李象远. 戊酸甲酯高温点火的激波管研究[J]. 物理化学学报, 2018, 34(6): 618-624.
[3] 郑东,钟北京,姚通. 航空煤油替代燃料模型构建方法及HEF航空煤油替代燃料模型[J]. 物理化学学报, 2017, 33(12): 2438-2445.
[4] 张巍锋,鲜雷勇,雍康乐,何九宁,张昌华,李萍,李象远. 正十一烷/空气在宽温度范围下着火延迟的激波管研究[J]. 物理化学学报, 2016, 32(9): 2216-2222.
[5] 郑朝蕾, 梁振龙. 适用于HCCI燃烧的汽油替代燃料化学动力学简化模型[J]. 物理化学学报, 2015, 31(7): 1265-1274.
[6] 何九宁, 李有亮, 张昌华, 李萍, 李象远. 十氢萘/空气混合物高温着火延迟的激波管测量[J]. 物理化学学报, 2015, 31(5): 836-842.
[7] 郑东, 于维铭, 钟北京. RP-3航空煤油替代燃料及其化学反应动力学模型[J]. 物理化学学报, 2015, 31(4): 636-642.
[8] 徐佳琪, 郭俊江, 刘爱科, 王健礼, 谈宁馨, 李象远. RP-3替代燃料自点火燃烧机理构建及动力学模拟[J]. 物理化学学报, 2015, 31(4): 643-652.
[9] 巴延涛, 侯凌云, 毛晓芳, 汪凤山. 甲基肼/四氧化二氮反应化学动力学模型构建及分析[J]. 物理化学学报, 2014, 30(6): 1042-1048.
[10] 姚通, 钟北京. 正癸烷着火及燃烧的化学动力学模型[J]. 物理化学学报, 2013, 29(02): 237-244.
[11] 郑东, 钟北京. 异辛烷/正庚烷/乙醇三组分燃料着火的化学动力学模型[J]. 物理化学学报, 2012, 28(09): 2029-2036.
[12] 唐洪昌, 张昌华, 李萍, 王利东, 叶彬, 李象远. 煤油自点火特性的实验研究[J]. 物理化学学报, 2012, 28(04): 787-791.