物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1907012.doi: 10.3866/PKU.WHXB201907012
所属专题: 庆祝唐有祺院士百岁华诞专刊
收稿日期:
2019-07-01
录用日期:
2019-09-06
发布日期:
2019-09-20
通讯作者:
王哲明,高松
E-mail:zmw@pku.edu.cn;gaosong@pku.edu.cn
基金资助:
Sa Chen,Ran Shang,Bingwu Wang,Zheming Wang*(),Song Gao*(
)
Received:
2019-07-01
Accepted:
2019-09-06
Published:
2019-09-20
Contact:
Zheming Wang,Song Gao
E-mail:zmw@pku.edu.cn;gaosong@pku.edu.cn
Supported by:
摘要:
作为与传统纯无机钙钛矿材料互补的体系,有机-无机或杂化钙钛矿材料结合了有机和无机成分各自的特性,在相变、临界现象和相关功能性质的研究中展现了众多新的可能性和机会。其中,金属甲酸铵钙钛矿表现优越,且其功能和性质十分依赖于金属离子和铵的特性。本工作借助固体化学中的固溶体策略,研究各向异性磁稀释杂化钙钛矿[CH3NH3][CoxZn1-x(HCOO)3]系列的制备、结构和磁性。该系列的全程固溶体(x = 0–1或摩尔百分比Co% = 0–100%)都可以用溶液化学方法制备获得,并由单晶和粉末X射线衍射确定了固溶体全程同构。它们都属于正交晶系,空间群Pnma,晶胞参数范围为a = 8.3015(2)–8.3207(3) Å,b = 11.6574(4)–11.6811(5) Å,c = 8.1315(3)–8.1427(4) Å,V = 787.89(5)–790.98(7) Å3 (1 Å = 0.1 nm)。钙钛矿结构由金属-甲酸的简单立方阴离子骨架和骨架孔穴中的CH3NH3+阳离子构成,CH3NH3+阳离子和骨架之间形成N―H···O氢键。在这个系列中,固溶体晶体结构的点阵和结构参数几乎没有变化。因此,该系列提供了一个很好的在结构和分子几何参数不变的条件下研究磁稀释效应的分子磁性体系。在逐步稀释的过程中,Co2+离子的磁各向异性和逐渐消失的较大自旋倾斜的贡献,抑制或减少了在低温和低场下的磁化强度,这与各向同性[CH3NH3][MnxZn1-x(HCOO)3]体系在磁稀释时磁化强度增大的行为相反。实验获得的逾渗阈值为(Co%)P = 27(1)% (或xP = 0.27(1)),低于按逾渗理论得到的简单立方格子上的逾渗阈值31%,这也是由于[CH3NH3][CoxZn1-x(HCOO)3]体系磁各向异性的缘故。此外,观察到纯金属Co和Zn成员在约120 K左右发生少见的非公度相变。低温下的非公度性对于磁性质也产生一定的影响。
MSC2000:
陈洒,商冉,王炳武,王哲明,高松. 一个各向异性磁稀释杂化钙钛矿系列[CH3NH3][CoxZn1-x(HCOO)3][J]. 物理化学学报, 2020, 36(1): 1907012.
Sa Chen,Ran Shang,Bingwu Wang,Zheming Wang,Song Gao. An Anisotropic Diluted Magnetic Hybrid Perovskite Series of [CH3NH3][CoxZn1-x(HCOO)3][J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907012.
Table 1
The brief crystallographic data for Co0, Co10, …, Co88, and Co100, all at 180 K, and in orthorhombic space group Pnma. In the last column the ranges for respective cell parameters are given."
Compound | Co0 | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 | Cell para. range |
formula | C4H9NO6Zn | C4H9NO6Co0.10Zn0.90 | C4H9NO6Co0.19Zn0.81 | C4H9NO6Co0.29Zn0.71 | C4H9NO6Co0.40Zn0.60 | C4H9NO6Co0.48Zn0.52 | C4H9NO6Co0.59Zn0.41 | C4H9NO6Co0.69Zn0.31 | C4H9NO6Co0.78Zn0.22 | C4H9NO6Co0.88Zn0.12 | C4H9NO6Co | |
Mw | 232.49 | 231.85 | 231.24 | 230.60 | 229.93 | 229.38 | 228.68 | 228.04 | 227.48 | 226.81 | 226.05 | |
a/Å | 8.3194(4) | 8.3207(3) | 8.3141(3) | 8.3194(2) | 8.3119(3) | 8.3075(3) | 8.3191(4) | 8.3015(2) | 8.3031(3) | 8.3110(3) | 8.3039(4) | 8.3015–8.3207 |
b/Å | 11.6703(5) | 11.6774(4) | 11.6712(5) | 11.6753(3) | 11.6607(4) | 11.6574(4) | 11.6771(6) | 11.6721(2) | 11.6679(3) | 11.6811(5) | 11.6806(6) | 11.6574–11.6811 |
c/Å | 8.1368(4) | 8.1366(3) | 8.1315(3) | 8.1354(2) | 8.1331(3) | 8.1357(3) | 8.1424(4) | 8.1369(2) | 8.1353(3) | 8.1371(3) | 8.1427(4) | 8.1315–8.1427 |
α, β, γ /° | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 |
V/Å3 | 790.00(6) | 790.59(5) | 789.04(5) | 790.20(3) | 788.28(5) | 787.89(5) | 790.98(7) | 788.43(3) | 788.15(5) | 789.96(5) | 789.80(7) | 787.89–790.98 |
no. total/uniq/obs. reflns. | 12168/1067/922 | 12298/1066/909 | 12079/1064/859 | 37029/1067/977 | 13719/1063/944 | 16363/1061/923 | 6392/1038/787 | 43147/1064/958 | 18977/1064/956 | 15198/1065/949 | 12454/1063/912 | |
R1, wR2 [I ≥ 2σ(I)] | 0.0179, 0.0475 | 0.0184, 0.0456 | 0.0216, 0.0514 | 0.0155, 0.0431 | 0.0172, 0.0462 | 0.0202, 0.0573 | 0.0261, 0.0569 | 0.0193, 0.0545 | 0.0189, 0.0531 | 0.0181, 0.0491 | 0.0192, 0.0480 | |
GOF | 1.002 | 1.003 | 0.998 | 0.998 | 1.001 | 1.001 | 0.999 | 0.998 | 1.002 | 0.999 | 1.003 |
Table 2
Selected molecular geometries, bond distances (Å) and bond angles (°), N―H…O hydrogen bonds (N…O distances, Å, and N―H…O angles, °) between the CH3NH3+ cation and the anionic framework, shortest C…O contacts (Å), and the M…M distances (Å) in the structures of Co0, Co10, …, Co88, and Co100. The variation ranges for all respective molecular geometries are summarized in the last column."
Compound | Co0 | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 | Data variation range |
M―O | 2.0929(8)×2 2.1010(9)×2 2.1173(8)×2 | 2.0916(9)×2 2.101(1)×2 2.1167(9)×2 | 2.090(1)×2 2.100(1)×2 2.114(1)×2 | 2.0908(7)×2 2.1000(7)×2 2.1158(7)×2 | 2.0889(8)×2 2.0975(8)×2 2.1137(7)×2 | 2.0880(9)×2 2.0960(9)×2 2.1126(8)×2 | 2.090(1)×2 2.103(1)×2 2.117(1)×2 | 2.0881(8)×2 2.0980(8)×2 2.1114(8)×2 | 2.0871(8)×2 2.0979(8)×2 2.1122(7)×2 | 2.0879(7)×2 2.0997(8)×2 2.1145(7)×2 | 2.0896(8)×2 2.0997(9)×2 2.1126(8)×2 | 2.0871–2.0929 2.0960–2.103 2.1114–2.1173 |
C―O | 1.241(1)–1.261(2) | 1.244(2)–1.261(2) | 1.241(2)–1.262(2) | 1.245(1)–1.261(1) | 1.244(1)–1.260(1) | 1.243(2)–1.262(2) | 1.240(2)–1.260(2) | 1.243(1)–1.263(1) | 1.245(1)–1.261(1) | 1.245(1)–1.262(1) | 1.244(1)–1.263(1) | 1.240–1.263 |
C―N | 1.476(3) | 1.475(3) | 1.476(4) | 1.477(3) | 1.476(3) | 1.477(3) | 1.478(4) | 1.475(3) | 1.475(3) | 1.478(3) | 1.477(3) | 1.475–1.478 |
cis- O―M―O | 87.23(3)–92.77(3) | 87.25(3)–92.75(4) | 87.27(4)–92.73(4) | 87.18(3)–92.82(3) | 87.18(3)–92.82(3) | 87.14(3)–92.86(3) | 87.21(5)–92.79(5) | 87.01(3)–92.99(3) | 87.04(3)–92.96(3) | 87.06(3)–92.94(3) | 87.01(3)–92.99(3) | 87.01–92.99 |
trans- O―M―O | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 |
M―O―C | 120.29(8)–121.72(8) | 120.22(8)–121.7(1) | 120.3(1)–121.7(1) | 120.24(6)–121.68(8) | 120.30(7)–121.77(7) | 120.31(8)–121.80(8) | 120.4(1)–122.0(1) | 120.25(7)–121.74(9) | 120.22(7)–121.74(7) | 120.26(7)–121.75(9) | 120.25(8)–121.73(9) | 120.22–122.0 |
O―C―O | 123.9(2)–124.6(1) | 124.1(2)–124.5(1) | 124.0(2)–124.6(2) | 124.0(1)–124.5(1) | 123.7(2)–124.6(1) | 124.0(2)–124.6(1) | 123.8(3)–124.8(2) | 124.0(2)–124.5(1) | 123.8(2)–124.5(1) | 123.9(2)–124.5(1) | 123.9(2)–124.4(1) | 123.7–124.6 |
N…O/N―H…O | 2.862(1)/173(2) 3.042(2)/147(1) | 2.862(1)/174(2) 3.045(2)/147(1) | 2.861(2)/172(2) 3.043(2)/148(1) | 2.862(1)/172(2) 3.044(2)/147.4(9) | 2.861(1)/172(2) 3.043(2)/147.8(9) | 2.859(1)/170(2) 3.045(2)/148.4(9) | 2.861(2)/171(2) 3.047(3)/148(1) | 2.861(1)/172(2) 3.045(2)/148.2(9) | 2.861(1)/171(2) 3.044(2)/147.9(9) | 2.864(1)/172(2) 3.043(2)/147.6(9) | 2.863(1)/173(2) 3.046(2)/147(1) | 2.859–2.864/170–173 3.042–3.047/147–148 |
C…O contacts | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 |
M…M | 5.8185(2)–5.8352(3) | 5.8189(2)–5.8387(2) | 5.8148(2)–5.8356(3) | 5.8180(2)–5.8377(2) | 5.8145(2)–5.8304(2) | 5.8139(2)–5.8287(2) | 5.8204(2)–5.8386(3) | 5.8121(2)–5.8361(2) | 5.8122(2)–5.8340(2) | 5.8156(2)–5.8406(3) | 5.8150(2)–5.8403(3) | 5.8121–5.8406 |
Table 3
Summary of magnetic properties of Co10 to Co100. Magnetization and susceptibility data are represented for per mole Co and under 100 Oe if not otherwise specified. In last column the data in parentheses were taken from Ref. 6a (under different fields, temperatures and orientations of single crystal, see the reference 6a)."
Compound | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 |
Co% | 10.0 | 19.4 | 29.3 | 39.7 | 48.4 | 59.2 | 69.1 | 77.7 | 88.3 | 100 |
Ca/cm3·K·mol-1 | 4.12 | 3.98 | 3.77 | 3.75 | 3.71 | 3.77 | 3.67 | 3.83 | 3.72 | 3.51 (3.42) j |
Θb/K | -35.4 | -37.4 | -34.6 | -36.9 | -35.4 | -43.7 | -44.9 | -48.4 | -50.6 | -51.7 (-43.5) j |
(χT)300 K/cm3·K·mol-1 | 3.71 | 3.57 | 3.38 | 3.34 | 3.32 | 3.30 | 3.21 | 3.31 | 3.19 | 2.99 (2.96) j |
(χT)50 K/cm3·K·mol-1 | 2.54 | 2.38 | 2.28 | 2.20 | 2.18 | 2.07 | 1.97 | 1.98 | 1.87 | 1.74 |
(χT)minc/cm3·K·mol-1, Tmin/K | 1.24, 7.0 | 1.28, 11.0 | 1.28, 13.0 | 1.19, 14.0 | 1.13, 15.0 | 1.12, 16.0 | 1.02, 16.0 | 0.96, 16.5 | ||
(χT)max c/cm3·K·mol-1, Tmax/K | 3.70, 2.6 | 5.90, 3.7 | 8.64, 5.1 | 11.8, 6.6 | 14.9, 8.2 | 18.6, 10.0 | 19.4, 12.0 | |||
(χT)2 K/cm3·K·mol-1 | 1.26 | 1.01 | 1.64 | 3.53 | 4.28 | 4.31 | 4.34 | 4.28 | 4.34 | 3.86 |
(M)2 K/cm3·G·mol-1 (ZFC, FC at 10 Oe) | 7.1, 7.1 | 6.1, 9.3 | 22.9, 44.6 | 72.0, 141.4 | 134.9, 190.7 | 133.0, 200.7 | 139.2, 204.7 | 135.8, 203.6 | 123.2, 207.5 | 128.3, 185.5 |
TP d/K (dZFC/dT, dFC/dT, at 10 Oe) | 2.2, 2.2 | 4.4, 4.2 | 6.4, 6.2 | 8.3, 8.1 | 10.4, 10.0 | 12.0, 12.0 | 14.1, 14.2 | |||
TP d/K (dχ/dT) | 2.4 | 4.2 | 6.2 | 8.2 | 10.1 | 12.0 | 14.2 | |||
TN e/K (average based on dc measurements) | 2.3 | 4.3 | 6.3 | 8.2 | 10.2 | 12.0 | 14.2 | |||
Tp/K (on χ′ and χ" at 10 Hz) | 2.1 4.1 | 4.2 | 6.6 7.0 | 8.6 8.6 | 10.4 10.4 | 12.4, 14.0 12.8, 14.0 | 14.2, 14.5, 15.2 14.1, 14.5, 15.2 | |||
HC f/kOe(at 2 K) | 0.075 | 0.29 | 0.68 | 2.53 | 3.87 | 4.58 | 5.21 | 4.98 (4) j | ||
MR g/Nβ (at 2 K) | ~0 | ~0 | 0.0074 | 0.027 | 0.038 | 0.041 | 0.040 | 0.038 | 0.036 | 0.031 (0.19/0) j |
M50 kOe h/Nβ (at 2 K) | 2.14 | 1.82 | 1.53 | 1.29 | 1.11 | 0.86 | 0.69 | 0.55 | 0.43 | 0.36 |
HSP i/kOe (at 2 K) | ~40 | ~40 | ~40 | ~50 | > 50 |
Fig 2
Magnetism for Co100 to Co10. (a) Plots of χT vs T (under 100 Oe field and T axis in logarithmic scale) and inset ZFC/FC plots (under 10 Oe). (b) The isothermal magnetization plots at 2 K and inset the plots in low field region. (c) The Co% dependence of the Curie constants, χT values at 300 K, 50 K and 2 K, and of the ZFC/FC magnetizations (under 10 Oe) at 2 K. (d) The Co% dependence of magnetizations (in logarithmic scale) under different fields, with plots at some fields highlighted, and the Co% dependence of HC."
1 | (a) Wang, Z. L.; Wang, Z. C. Functional and Smart Materials – Structural Evolution and Structural Analysis; Plenum Press: New York, 1998. |
(b) Müller, K. A.; Kool, T. W. Properties of Perovskites and Other Oxides; World Scientific Publishing Co. Pte. Ltd.: London, 2010. | |
2 | (a) Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715 |
(b) Mitzi, D. B. Prog. Inorg. Chem. 1999, 48, 1. doi: 10.1002/9780470166499.ch1 | |
(c) Li, W.; Wang, Z. M.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2, 16099. doi: 10.1038/natrevmats.2016.99 | |
(d) Xu, W. J.; Du, Z. Y.; Zhang, W. X.; Chen, X. M. CrystEngComm 2016, 18, 7915. doi: 10.1039/c6ce01485b | |
3 | (a) Shang, R.; Chen, S.; Wang, Z. M.; Gao, S. Functional Magnetic Materials Based on Metal Formate Frameworks. In Metal-Organic Framework Materials; Macgillivray, L. R., Lukehart, C. M. Eds; John Wiley & Sons, Ltd.: Chichester, 2014. doi: 10.1002/9781119951438.eibc2215 |
(b) Wang, Z. M.; Hu, K. L.; Gao, S.; Kobayashi, H. Adv. Mater. 2010, 22, 1526. doi: 10.1002/adma.200904438 | |
4 | (a) Wang, Z. M.; Zhang, B.; Otsuka, T.; Inoue, K.; Kobayashi, H.; Kurmoo, M. Dalton Trans. 2004, 2209. doi: 10.1039/b404466e |
(b) Wang, X. Y.; Gan, L.; Zhang, S. W.; Gao, S. Inorg. Chem. 2004, 43, 4615. doi: 10.1021/ic0498081 | |
(c) Hu, K. L.; Kurmoo, M.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2009, 15, 12050. doi: 10.1002/chem.200901605 | |
5 | (a) Chen, S.; Shang, R.; Hu, K. L.; Wang, Z. M.; Gao, S. Inorg. Chem. Front. 2014, 1, 83. doi: 10.1039/c3qi00034f |
(b) Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walshd, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538. doi: 10.1039/c5cc06190c | |
(c) Kieslich, G.; Forse, A. C.; Sun, S.; Butler, K. T.; Kumagai, S.; Wu, Y.; Warren, M. R.; Walsh, A.; Grey, C. P.; Cheetham, A. K. Chem. Mater. 2016, 28, 312. doi: 10.1021/acs.chemmater.5b04143 | |
6 | (a) Gómez-Aguirre, L. C.; Pato-Doldán, B.; Mira, J.; Castro-García, S.; Señarís-Rodríguez, M. A.; Sánchez-Andújar, M.; Singleton, J.; Zapf, V. S. J. Am. Chem. Soc. 2016, 138, 1122. doi: 10.1021/jacs.5b11688 |
(b) Fu, D. W.; Zhang, W.; Cai, H. L.; Zhang, Y.; Ge, J. Z.; Xiong, R. G.; Huang, S. D.; Nakamura, T. Angew. Chem. Int. Ed. 2011, 50, 11947. doi: 10.1002/anie.201103265 | |
(c) Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2009, 131, 13625. doi: 10.1021/ja904156s | |
(d) Mączka, M.; Gągor, A.; Ptak, M.; Paraguassu, W. T.; da Silva, A.; Sieradzki, A.; Pikul, A. Chem. Mater. 2017, 29, 2264. doi: 10.1021/acs.chemmater.6b05249 | |
7 | (a) Yu, Y.; Shang, R.; Chen, S.; Wang, B. W.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2017, 23, 9857. doi: 10.1002/chem.201701099 |
(b) Mączka, M.; Pietraszko, A.; Macalik, L.; Sieradzki, A.; Trzmiel, J.; Pikul, A. Dalton Trans. 2014, 43, 17075. doi: 10.1039/c4dt02586e | |
(c) Mączka, M.; Bondzior, B.; Dereń, P.; Sieradzki, A.; Trzmiel, J.; Pietraszko, A.; Hanuza, J. Dalton Trans. 2015, 44, 6871. doi: 10.1039/c5dt00060b | |
(d) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Stroppa, A.; Di Sante, D.; Perez-Mato, J. M.; Macalik, L. Dalton Trans. 2016, 45, 2574. doi: 10.1039/c5dt04536c | |
(e) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Bondzior, B.; Dereń, P.; Pawlus, S. Phys. Chem. Chem. Phys. 2016, 18, 29629. doi: 10.1039/c6cp05151k | |
8 | (a) Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Angew. Chem. Int. Ed. 2015, 54, 11093. doi: 10.1002/anie.201504396 |
(b) Kieslich, G.; Kumagai, Sh.; Forse, A. C.; Sun, S.; Henke, S.; Yamashita, M.; Greyd, C. P.; Cheetham, A. K. Chem. Sci. 2016, 7, 5108. doi: 10.1039/c6sc01247g | |
9 | (a) Evans, N. L.; Thygesen, P. M. M.; Boströ m, H. L. B.; Reynolds, E. M.; Collings, I. E.; Phillips, A. E.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138, 9393. doi: 10.1021/jacs.6b05208 |
(b) Shang, R.; Sun, X.; Wang, Z. M.; Gao, S. Chem. Asian J. 2012, 7, 1697. doi: 10.1002/asia.201200139 | |
10 | (a) Chen, S. Ammonium-Metal-Formate Perovskites: Coexistence and Manipulation of Magnetic and Electric Ordering. Ph. D. Dissertation, Peking University, Beijing, 2016. |
(b) Yu, Y. The Study on the Functional Materials of Heterometallic Ammonium Metal Formates. Ph. D. Dissertation, Peking University, Beijing, 2017. | |
11 | (a) de Jongh, L. J. Static Thermodynamic Properties of Site-Random Magnetic Systems and Percolation Problem. In Magnetic Phase Transitions - Proceedings of a Summer School; Ausloos, M., Elliott R. J. Eds.; Springer-Verlag: Berlin Heidelberg, 1983; pp. 172-194. |
(b) Binder, K.; Kob, W. Glassy Materials and Disordered Solids – An Introduction to Their Statictical Mechanics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005. | |
(c) Zallen, R. The Physics of Amorphous Solids; Wiley: New York, 1983. | |
12 | CrysAlisPro software, Rigaku Oxford Diffraction: Tokyo, Japan, 2015. |
13 | Sheldrick G.M. SHELX-97, Program for Crystal Structure Determination Germany: University of Göttingen, 1997. |
14 | Mulay L.N. ; Boudreaux E.A. Theory and Applications of Molecular Diamagnetism New York: John Wiley & Sons Inc., 1976. |
15 | Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds New York: Wiley, 1986. |
16 | (a) Mączka, M.; Ciupa, A.; Gągor, A.; Sieradzki, A.; Pikul, A.; Macalik, B.; Drozd, M. Inorg. Chem. 2014, 53, 5260. doi: 10.1021/ic500479e |
(b) Mączka, M.; Ptak, M.; Macalik, L. Vib. Spectrosc. 2014, 71, 98. doi: 10.1016/j.vibspec.2014.01.013 | |
(c) Mączka, M.; Szymborska-Małek, K.; Ciupa, A.; Hanuza, J. Vib. Spectrosc. 2015, 77, 17. doi: 10.1016/j.vibspec.2015.02.003 | |
17 | (a) van Smaalen, S. Incommensurate Crystallography; Oxford University Press Inc.: New York, 2007. |
(b) Janssen, T.; Chapuis, G.; de Boissieu, M. Aperiodic Crystals: from Modulated Phases to Quasicrystals; Oxford University Press Inc.: New York, 2007. | |
18 |
Chen S. ; Shang R. ; Wang B.W. ; Wang Z.M. ; Gao S. APL Mater. 2018, 6, 114205.
doi: 10.1063/1.5040688 |
19 | Carlin R.L. ; van Duyneveldt A.J. Magnetic Properties of Transition Metal Compounds; New York: Springer-Verlag 1977. |
20 | (a) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. doi: 10.1039/b804757j |
(b) Lloret, F.; Julve, M.; Cano, J.; Ruiz-García, R.; Pardo, E. Inorg. Chim. Acta 2008, 361, 3432. doi: 10.1016/j.ica.2008.03.114 | |
(c) Palii, A. V.; Tsukerblat, B. S.; Coronado, E.; Clemente-Juan, J. M.; Borras-Almenar, J. J. Inorg. Chem. 2003, 42, 2455. doi: 10.1021/ic0259686 | |
21 |
Boča M. ; Svoboda I. ; Renz F. ; Fuess H. Acta Cryst. C. 2004, 60, m631.
doi: 10.1107/s0108270104025776 |
22 | Casey, A. T.; Mitra, S. Magnetic Behavior of Components Containing dn Ions. In Theory and Application of Molecular Paramagnetism; Mulay, L. N., Boudreaux, E. A. Eds; Wiley: New York, 1976; pp. 211-215. |
23 | (a) Breed, D. J.; Gilijamse, K.; Sterkenburg, J. W. E.; Miedema, A. R. J. Appl. Phys. 1970, 41, 1267. doi: 10.1063/1.1658906 |
(b) Harris, A. B.; Kirkpatrick, S. Phys. Rev. B 1977, 16, 542. doi: 10.1103/physrevb.16.542 | |
(c) King, A. R.; Jaccarino, V. J. Appl. Phys. 1981, 52, 1785. doi: 10.1063/1.329714 | |
24 |
ManakaH. ; Nagata S. ; Watanabe Y. ; Kikunaga K. ; Yamamoto T. ; Terada N. ; Obara K. J. Phys.: Conf. Ser. 2009, 145, 012080.
doi: 10.1088/1742-6596/145/1/012080 |
25 | (a) Christensen, K.; Moloney, N. R. Complexity and Criticality; Imperial College Press: London, 2005. |
(b) Stinchcombe, R. B. J. Phys. C: Solid State Phys. 1979, 12, 4533. doi: 10.1088/0022-3719/12/21/020 | |
(c) Sur, A.; Lebowitz, J. L.; Marro, J.; Kalos, M. H.; Kirkpatrick, S. J. Statis. Phys. 1976, 15, 345. doi: 10.1007/bf01020338 | |
26 | (a) Enoki, T.; Tsujikawa, I. J. Phys. Soc. Japan 1975, 39, 324. doi: 10.1143/jpsj.39.324 |
(b) Elliott, R. J.; Heap, B. R. Proc. R. Soc. London. Ser. A 1962, 265, 264. doi: 10.1098/rspa.1962.0008 |
[1] | 李淏淼, 董化, 李璟睿, 吴朝新. 锡基钙钛矿太阳能电池研究进展[J]. 物理化学学报, 2021, 37(4): 2007006 -0 . |
[2] | 王甜, 张太阳, 陈悦天, 赵一新. ALD-Al2O3涂层保护的高抗湿5-氨基戊酸铰链甲胺铅溴钙钛矿薄膜[J]. 物理化学学报, 2021, 37(4): 2007021 -0 . |
[3] | 李亚文, 那广仁, 罗树林, 贺欣, 张立军. 全无机卤化铅钙钛矿的结构、热力学稳定性和电子性质[J]. 物理化学学报, 2021, 37(4): 2007015 -0 . |
[4] | 许桂英, 薛荣明, 张默瑶, 李耀文, 李永舫. 基于吡嗪空穴传输层的合成及在p -i-n型钙钛矿太阳能电池中的应用[J]. 物理化学学报, 2021, 37(4): 2008050 -0 . |
[5] | 苏岳锋, 张其雨, 陈来, 包丽颖, 卢赟, 陈实, 吴锋. ZrO2包覆高镍LiNi0.8Co0.1Mn0.1O2正极材料提高其循环稳定性的作用机理[J]. 物理化学学报, 2021, 37(3): 2005062 -0 . |
[6] | 张自博, 邓伟, 周旭峰, 刘兆平. 稳定锂电化学沉积和溶解行为的LiC6异质微结构界面层[J]. 物理化学学报, 2021, 37(2): 2008092 -0 . |
[7] | 赵雨萌, 任凌霄, 王澳轩, 罗加严. 锂金属电池中的复合负极[J]. 物理化学学报, 2021, 37(2): 2008090 -0 . |
[8] | 吴晨, 周颖, 朱晓龙, 詹忞之, 杨汉西, 钱江锋. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37(2): 2008044 -0 . |
[9] | 杨天怡, 崔铖, 戎宏盼, 张加涛, 王定胜. 铂基金属间化合物纳米晶的最新进展:可控合成与电催化应用[J]. 物理化学学报, 2020, 36(9): 2003047 -0 . |
[10] | 李凯旋, 张泰隆, 李会增, 李明珠, 宋延林. 纳米粒子的精准组装[J]. 物理化学学报, 2020, 36(9): 1911057 -0 . |
[11] | 熊辉, 谢歆雯, 王苗, 侯雅琦, 侯旭. 网状骨架CVD生长碳纳米管用于重盐水脱盐[J]. 物理化学学报, 2020, 36(9): 1912008 -0 . |
[12] | 赵亚楠, 何敏, 刘晓芳, 刘斌, 杨建辉. 金二元纳米晶超晶格的自组装和结构表征[J]. 物理化学学报, 2020, 36(9): 1908041 -0 . |
[13] | 杨亚梅, 伦会洁, 龙腊生, 孔祥建, 郑兰荪. 稀土-钛氧簇合物EuTi6,EuTi7和La2Ti14的可控合成[J]. 物理化学学报, 2020, 36(9): 1912007 -0 . |
[14] | 张建, 王亮, 伍芷毅, 王成涛, 苏泽瑞, 肖丰收. 理性设计核-壳Rh@沸石催化材料用于二烯烃选择加氢反应[J]. 物理化学学报, 2020, 36(9): 1912001 -0 . |
[15] | 葛杨, 牟许霖, 卢岳, 隋曼龄. 空气下光诱导有机金属卤化钙钛矿薄膜的降解机理[J]. 物理化学学报, 2020, 36(8): 1905039 -0 . |
|