物理化学学报 >> 2021, Vol. 37 >> Issue (12): 2001003.doi: 10.3866/PKU.WHXB202001003

综述 上一篇    下一篇

磷基钠离子电池负极材料研究进展

王思岚1, 杨国锐1,2,3,*(), SalmanNasir Muhammad1,4, 王筱珺1, 王嘉楠1,3, 延卫1,*()   

  1. 1 西安交通大学环境科学与工程系,西安 710049
    2 西安交通大学苏州研究院,江苏 苏州 215123
    3 西安交通大学理学院应用化学系,西安 710049
    4 Department of Structures and Environmental Engineering, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
  • 收稿日期:2020-01-02 录用日期:2020-03-06 发布日期:2020-03-16
  • 通讯作者: 杨国锐,延卫 E-mail:yangguorui@xjtu.edu.cn;yanwei@xjtu.edu.cn
  • 作者简介:杨国锐,1985年生。2014年获西安交通大学动力工程及工程热物理专业博士。现为西安交通大学理学院助理研究员,主要从事光电材料和二次离子电池电极材料开发与应用研究
    延卫,1970年生。1997年获南开大学高分子所高分子化学与物理专业博士。现为西安交通大学能源动力工程及工程热物理学院教授,博士生导师,2007年入选“教育部新世纪优秀人才”。主要从事水处理及资源化利用、纳米功能材料合成、电化学与光电催化、新能源开发与利用等研究
  • 基金资助:
    国家自然科学基金(51978569);国家自然科学基金(51908458);江苏省自然科学基金(BK20170416);中国博士后科学基金(2019M650264);中国博士后科学基金(2018M64363)

Research Progress on Phosphorus-based Anode Materials for Sodium-Ion Batteries

Silan Wang1, Guorui Yang1,2,3,*(), Nasir Muhammad Salman1,4, Xiaojun Wang1, Jianan Wang1,3, Wei Yan1,*()   

  1. 1 Xi'an Jiaotong University Suzhou Institute, Suzhou 215123, Jiangsu Province, China
    2 Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
    3 Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
    4 Department of Structures and Environmental Engineering, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
  • Received:2020-01-02 Accepted:2020-03-06 Published:2020-03-16
  • Contact: Guorui Yang,Wei Yan E-mail:yangguorui@xjtu.edu.cn;yanwei@xjtu.edu.cn
  • About author:Email: yanwei@xjtu.edu.cn (W.Y.)
    Email: yangguorui@xjtu.edu.cn (G.Y.)
  • Supported by:
    the National Natural Science Foundation of China(51978569);the National Natural Science Foundation of China(51908458);the Natural Science Fund of Jiangsu Province, China(BK20170416);the China Postdoctoral Science Foundation(2019M650264);the China Postdoctoral Science Foundation(2018M64363)

摘要:

钠离子电池因丰富的钠储量以及与锂离子电池相似的工作原理,是重要的可替代锂离子电池的新型储能技术。但是较低能量密度和功率密度阻碍了钠离子电池的大规模应用。因此高性能钠离子电池电极材料特别是负极材料的研发成为钠离子电池发展的关键。磷基电极材料具有较高的理论容量,且储量丰富价格低廉,因此其成为极具应用前景的钠离子电池负极材料。然而,导电性差和过大的体积膨胀导致磷基负极容量和循环寿命低,通过尺寸结构调控和与碳基或非碳基材料复合能够有效缓解磷基电极材缺陷,从而提高钠离子电池的循环容量、稳定性与倍率性能。本文详细综述了近年来磷基钠离子电池负极材料的最新研究进展,主要包括储钠机理和改性策略,总结了目前磷基负极材料研究存在的问题,并提出了解决这些问题的方法和策略,最后对钠离子电池发展前景进行了展望。

关键词: 钠离子电池, 磷, 磷烯, 磷化物, 负极材料

Abstract:

The availability of renewable energy resources (e.g., solar, wind, and tides) is crucial for promoting sustainable development and alleviating environmental issues. However, the intermittent nature of renewable energy requires the application of grid-level electrical-energy storage (EES) technologies to achieve a continuous supply of electricity. As is well known, lithium-ion batteries (LIBs) with high energy density dominate the rechargeable battery market. When faced with the requirements of large-scale power stations, high cost, and limited availability of raw materials, these become serious issues in the application of LIBs. In contrast, sodium-ion batteries (SIBs), which share similar operation mechanisms with LIBs, are considered to be more suitable for grid-level storage due to easy accessibility and geographically available reserves of sodium raw material, with significant improvements in its processing technology made recently. Nevertheless, limited energy density and unsatisfactory cycling life hinder the commercialization of SIBs significantly, which necessitates the use of novel electrode materials with high specific capacities and extended durability. Compared with the accelerated development of cathodes, graphite, on the anode side, as a commercialized anode for LIBs fails to store Na-ions owing to unfavorable thermodynamics. Hence, discovering and designing novel anode materials for SIBs have become a significant challenge. Among different anode materials, phosphorus-based (including phosphides) anodes have been recognized as one of the most promising materials because of their high theoretical capacity (2596 mAh·g-1 for phosphorus) and the abundance of phosphorus resources. Nonetheless, phosphorus-based anodes exhibit low conductivity and large volume expansion, resulting in inferior cycling performance and rating property. Therefore, various strategies, including nanosizing, morphology control, and carbon (non-carbon) modification, have been adopted to improve the performance of phosphorus-based anodes. In this review, the current progress on phosphorus-based anodes for SIBs are summarized. The Na-storage mechanisms of phosphorus-based materials are briefly discussed. Next, strategies for overcoming the disadvantages of phosphorus-based anodes are discussed extensively, including the size and morphology adjustment as well as the carbon (non-carbon) modification. Specifically, the carbon modification not only increases the conductivity but also decreases the volume expansion. Finally, the challenges and perspective of phosphorus-based anodes for SIBs are proposed. In this review paper, the development of suitable anode materials that can help to accelerate the commercialization of SIBs is highlighted.

Key words: Sodium ion battery, Phosphorus, Phosphorene, Phosphide, Anode material

MSC2000: 

  • O646