物理化学学报 >> 2021, Vol. 37 >> Issue (8): 2009022.doi: 10.3866/PKU.WHXB202009022
所属专题: 二维光催化材料
李艳, 胡星盛, 黄静伟(), 王磊, 佘厚德, 王其召(
)
收稿日期:
2020-09-07
录用日期:
2020-10-22
发布日期:
2020-10-28
通讯作者:
黄静伟,王其召
E-mail:huangjingwei2009@163.com;wangqizhao@163.com; qizhaosjtu@gmail.com
作者简介:
Jingwei Huang is currently an associate professor in the school of chemistry and chemical engineering of Northwest Normal University. He obtained Ph.D. degree from Lanzhou University in 2017. Now he is mainly engaged in photoelectrocatalytic and electrocatalytic water splitting to produce hydrogen, and CO2 reduction基金资助:
Yan Li, Xingsheng Hu, Jingwei Huang(), Lei Wang, Houde She, Qizhao Wang(
)
Received:
2020-09-07
Accepted:
2020-10-22
Published:
2020-10-28
Contact:
Jingwei Huang,Qizhao Wang
E-mail:huangjingwei2009@163.com;wangqizhao@163.com; qizhaosjtu@gmail.com
About author:
Email: wangqizhao@163.com, qizhaosjtu@gmail.com Tel: +86-931-7972677 (Q.W.)Supported by:
摘要:
化石燃料的使用已经引起了严重的环境问题,例如空气污染和温室效应。同时,化石燃料作为不可再生能源无法一直满足人们不断的能源需求。因此,开发清洁可再生能源非常重要。氢是一种清洁无污染的可再生能源,可以缓解整个社会的能源压力。地球在一秒钟内接收到的太阳光能为1.7 × 1014 J,远远超过了人类一年的总能源消耗。因此,将太阳能转化为有价值的氢能对于减少对化石燃料的依赖具有重要的意义。自1972年藤岛昭和本多健一首次报道TiO2光催化剂以来,人们发现半导体可以通过电或光驱动水分解产生清洁无污染的氢气。通过这种方式产氢不仅可以替代化石燃料,还可以提供环保的可再生氢能源,受到了人们的广泛关注。光电化学(PEC)水分解可以利用太阳能生产清洁、可持续的氢能。由于光阳极上的析氧反应(OER)缓慢,因此总的能量转换效率仍然很低,限制了PEC水分解的实际应用。助催化剂对于改善光电化学水分解性能是必要的。贵金属氧化物已被证明是最有效的OER催化剂,因为它们在酸性和碱性条件下具有很高的OER活性。然而,这些贵金属氧化物成本高和储量低,极大地限制了它们的实际应用。因此,开发高活性和低成本的OER助催化剂非常重要。迄今为止,对第一周期过渡金属(例如,Fe,Co,Ni和Mn)助催化剂的合成研究比较集中。其中,铁在地球上含量丰富,并且毒性比其他过渡金属低,使其成为良好的助催化剂。另外,铁基化合物具有半导体/金属的特性和独特的电子结构,可以改善材料的电导率和对水的吸附性能。目前,各种具有高催化活性的铁基催化剂已经被设计来提高光电化学的水氧化效率。本文简要概述了羟基氧化铁,铁基层状双氢氧化物和铁基钙钛矿等的结构、合成和应用方面的最新研究进展,并讨论了这些助催化剂在光电化学水氧化的性能。
MSC2000:
李艳, 胡星盛, 黄静伟, 王磊, 佘厚德, 王其召. 铁基多相助催化剂光电化学水氧化研究进展[J]. 物理化学学报, 2021, 37(8): 2009022.
Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation[J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022.
Table 1
Comparison of iron-based oxyhydroxides for PEC water splitting"
Photoanode | Photocurrent density change | The onset potential change | Illumination conditions | Ref. |
WO3@a-Fe2O3/FeOOH | 0.3 to 1.12 mA·cm-2 at 1.23 V vs. RHE | 0.9 V to 0.78 V | AM 1.5G, 100 mW·cm-2 | |
V2O5/rGO/BiVO4/FeOOH/NiOOH | 0.25 to 3.06 mA·cm-2 at 1.5 V vs. Ag/AgCl | 0.5 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/FeOOH NFs on Au/Fe | 1.45 to 3.1 mA·cm-2 at 1.5 V vs. RHE | 1 V to 0.7 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH QDs/ZnO | 0.21 to 0.44 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
h-FeOOH/Fe2O3 | 0.85 to 1.31 mA·cm-2 at 1.23 V vs. RHE | 0.92 V to 0.83 V | AM 1.5G, 100 mW·cm-2 | |
3C-SiC/FeOOH | 0.52 to 0.73 mA·cm-2 at 1.23 V vs. RHE | 0.4 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
β-FeOOH/BiVO4 | 0.62 to 4.3 mA·cm-2 at 1.23 V vs. RHE | 0.8 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/BiVO4 | 1.1 to 2.3 mA·cm-2 at 1.23 V vs. RHE | 0.45 V to 0.3 V | AM 1.5G, 100 mW·cm-2 | |
rGO-α-Fe2O3/β-FeOOH | 0.26 to 0.62 mA·cm-2 at 1.23 V vs. RHE | 0.88 V to 0.75 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4@Ni:FeOOH | 0.25 to 2.86 mA·cm-2 at 1.23 V vs. RHE | 0.6 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/H:BiVO4 | 0.42 to 1.66 mA·cm-2 at 1.23 V vs. RHE | 0.95 V to 0.23 V | 150 W Xe lamp, 100 mW·cm-2 | |
CuWO4/CdS/FeOOH | 0.58 to 2.05 mA·cm-2 at 1.23 V vs. RHE | 0.35 V to 0.25 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/NiFeOOH | 0.09 to 0.67 mA·cm-2 at 1.23 V vs. RHE | 1 V to 0.8 V | AM 1.5G, 100 mW·cm-2 | |
Ti-Fe2O3/FeOOH | nearly zero to mA·cm-2 at 1.5 V vs. RHE | 1 V to 0.92 V | AM 1.5G, 100 mW·cm-2 | |
ZnO/TiO2/FeOOH | 0.23 to 1.59 mA·cm-2 at 1.8 V vs. RHE | 0.41 V to 0.14 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/FeOOH | 0.83 to 0.91 mA·cm-2 at 1.23 V vs. RHE | 0.72 V to 0.63 V | AM 1.5G, 100 mW·cm-2 | |
WO3/FeOOH | 0.65 to 1.3 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
Co-FeOOH | 0.69 to 4.71 mA·cm-2 at 1.0 V vs. RHE | 1.5 V to 1.23 V | AM 1.5G, 100 mW·cm-2 | |
Ni-FeOOH | 0.69 to 2.55 mA·cm-2 at 1.0 V vs. RHE | 1.5 V to 1.23 V | AM 1.5G, 100 mW·cm-2 | |
WO3/porous-BiVO4/FeOOH | 1.01 to 4.4 mA·cm-2 at 1.23 V vs. RHE | 0.3 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/Fe2O3 | 1.55 to 2.4 mA·cm-2 at 1.23 V vs. RHE | 0.661 V to 0.582 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/rGO/BiVO4 | 0.99 to 3.25 mA·cm-2 at 1.23 V vs. RHE | 0.35 V to 0.3 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/Fe2O3 | 0.612 to 1.21 mA·cm-2 at 1.23 V vs. RHE | 0.77 V to 0.65 V | AM 1.5G, 100 mW·cm-2 |
Fig 4
(a) The idealized structure of carbonate-intercalated LDHs with different M2+/M3+molar ratios, reproduced with permission from Chem. Soc. Rev., The Royal Society of Chemistry 98. (b) The synthetic method and formed NiFe LDH on RGO support for oxygen evolution, adapted from J. Power Sources, Elsevier 102."
Table 2
Comparison of iron-based layered double hydroxides for PEC water splitting."
Photoanode | Photocurrent density change | The onset potential change | Illumination conditions | Ref. |
BiVO4/NiFe-LDH | 0.5 to 1.58 mA·cm-2 at 1.23 V vs. RHE | 0.75 V to 0.32 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/rGO/Fe2O3 | 0.45 to 0.95 mA·cm-2 at 1.23 V vs. RHE | 1.0 V to 0.85 V | AM 1.5G, 100 mW·cm-2 | |
TiO2/BiVO4/NiFe-LDH | 6.9 to 17.6 μA·cm-2 at 0.1 V vs. Ag/AgCl | 0.74 V to 0.72 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/BiVO4 | 0.79 mA to 1.93 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/Ni0.5Fe0.5-LDH | 0.3 to 1.21 mA·cm-2 at 1.23 V vs. RHE | 0.47 V to 0.15 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/Co0.5Fe0.5-LDH | 0.3 to 1.05 mA·cm-2 at 1.23 V vs. RHE | 0.47 V to 0.18 V | AM 1.5G, 100 mW·cm-2 | |
WO3/Fe2O3/NiFe-LDH | 1.6 to 3.0 mA·cm-2 at 1.8 V vs. RHE | 0.2 V to 0.1 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/rGO/NiFe-LDH | 1.14 to 3.26 mA·cm-2 at 1.23 V vs. RHE | similar onset potential | AM 1.5G, 100 mW·cm-2 | |
TiO2/NiFe-LDH | 0.92 to 1.18 mA·cm-2 at 1.245 V vs. RHE | -0.2 V to -0.3 V | AM 1.5G, 100 mW·cm-2 | |
Ti-TiO2-x@CoFe-LDH | 0.65 to 0.78 mA·cm-2 at 1.23 V vs. RHE | 0.23 V to 0.18 V | AM 1.5G, 100 mW·cm-2 | |
CoFe-LDH/TNWs | 0.33 to 3.0 mA·cm-2 at 1.23 V vs. RHE | 0.33 V to 0.22 V | AM 1.5G, 100 mW·cm-2 | |
CoFe-LDH@g-C3N4 | 0.061 to 0.196 mA·cm-2 at 1.23 V vs. RHE | 0.38 V to 0.346 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/TiO2 | 0.23 to 0.41 mA·cm-2 at 1.23 V vs. RHE | 0.36 V to 0.29 V | AM 1.5G, 100 mW·cm-2 | |
a-Fe2O3/NiFe-LDH | 47 to 141 μA·cm-2 at 1.23 V vs. RHE | 0.5 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
Mn:Fe2O3/NiFe-LDH | 0.5 to 1.8 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 |
Fig 5
(a) ABO3 perovskite structure: "A" site is occupied by Bi3+or La3+and "B" site is occupied by Fe3+, adapted from Appl. Surf. Sci Elsevier 116. (b) Current-potential plots for WO3, BVO, BFO, WO3/BVO, and WO3/BVO/BFO photoanodes under AM 1.5 G irradiation, Current-potential plots under light illumination and dark mode for (c) WO3/BVO and (d) WO3/BVO/BFO photoanodes, reproduced with permission from ACS Appl. Energy Mater. American Chemical Society128."
1 |
Shao Y. B. ; Zheng M. Y. ; Cai M. M. ; He L. ; Xu C. L. Electrochim. Acta 2017, 257, 1.
doi: 10.1016/j.electacta.2017.09.093 |
2 |
Wang J. Y. ; Li S. M. ; Lin R. B. ; Tu G. M. ; Wang J. ; Li Z. Q. Electrochim. Acta 2019, 301, 258.
doi: 10.1016/j.electacta.2019.01.157 |
3 | Sun S. ; Zhang X. ; Liu X. ; Pan L. ; Zhang X. ; Zou J. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905007. |
孙尚聪; 张旭雅; 刘显龙; 潘伦; 张香文; 邹吉军; 物理化学学报, 2020, 36 (3), 1905007.
doi: 10.3866/PKU.WHXB201905007 |
|
4 |
Kong D. ; Zheng Y. ; Kobielusz M. ; Wang Y. ; Bai Z. ; Macyk W. ; Wang X. ; Tang J. Mater. Today 2018, 21 (8), 897.
doi: 10.1016/j.mattod.2018.04.009 |
5 |
Osterloh F. E. Chem. Soc. Rev. 2013, 42 (6), 2294.
doi: 10.1039/C2CS35266D |
6 | Qiu W. T. ; Huang Y. C. ; Wang Z. L. ; Xiao S. ; Ji H. B. ; Tong Y. X. Acta Phys. -Chim. Sin. 2017, 33 (1), 80. |
邱伟涛; 黄勇潮; 王子龙; 肖爽; 纪红兵; 童叶翔; 物理化学学报, 2017, 33 (1), 80.
doi: 10.3866/PKU.WHXB201607293 |
|
7 |
Chen S. ; Thind S. S. ; Chen A. Electrochem. Commun. 2016, 63, 10.
doi: 10.1016/j.elecom.2015.12.003 |
8 |
Das D. V. T. N. Int. J. Hydrog. Energy 2001, 26, 13.
doi: 10.1016/S0360-3199(00)00058-6 |
9 |
She H. ; Jiang M. ; Yue P. ; Huang J. ; Wang L. ; Li J. ; Zhu G. ; Wang Q. J. Colloid Interface Sci. 2019, 549, 80.
doi: 10.1016/j.jcis.2019.04.038 |
10 |
Fujishima A. H. K. Nature 1972, 238 (5358), 37.
doi: 10.1038/238037a0 |
11 | Wang Y. Q. ; Shen S. H. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36 (3), 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
12 | Jiang C. X. ; Hu Y. X. ; Dong W. ; Zheng F. G. ; Su X. D. ; Fang L. ; Shen M. R. Acta Phys. -Chim. Sin. 2014, 30 (10), 1867. |
姜春香; 胡玉祥; 董雯; 郑分刚; 苏晓东; 方亮; 沈明荣; 物理化学学报, 2014, 30 (10), 1867.
doi: 10.3866/PKU.WHXB201407221 |
|
13 |
Wang Y. ; Ni Y. Y. ; Liu B. ; Shang S. X. ; Yang S. ; Cao M. H. ; Hu C. W. Electrochim. Acta 2017, 257, 356.
doi: 10.1016/j.electacta.2017.10.011 |
14 |
Zhang J. ; Zhu G. ; Liu W. ; Xi Y. ; Golosov D. A. ; Zavadski S. М. ; Melnikov S. N. J. Alloy. Compd. 2020, 834, 154992.
doi: 10.1016/j.jallcom.2020.154992 |
15 |
Li N. B. ; Wei S. T. ; Xu Y. X. ; Liu J. ; Wu J. D. ; Jia G. R. ; Cui X. Q. Electrochim. Acta 2018, 290, 364.
doi: 10.1016/j.electacta.2018.09.098 |
16 |
Liao A. Z. ; He H. C. ; Tang L. Q. ; Li Y. C. ; Zhang J. J. ; Chen J. N. ; Chen L. ; Zhang C. F. ; Zhou Y. ; Zou Z. G. ACS Appl. Mater. Interfaces 2018, 10 (12), 10141.
doi: 10.1021/acsami.8b00367 |
17 |
Hu Y. W. ; Zhu J. S. ; Yang H. ; Lyu S. S. ; Chen J. Inorg. Chem. Commun. 2020, 117
doi: 10.1016/j.inoche.2020.107971 |
18 |
Niu S. Q. ; Sun Y. C. ; Sun G. J. ; Rakov D. ; Li Y. Z. ; Ma Y. ; Chu J. Y. ; Xu P. ACS Appl. Energy Mater. 2019, 2 (5), 3927.
doi: 10.1021/acsaem.9b00785 |
19 |
Wang Y. ; Ni Y. M. ; Wang X. ; Zhang N. ; Li P. H. ; Dong J. ; Liu B. ; Liu J. H. ; Cao M. H. ; Hu C. W. ACS Appl. Energy Mater. 2018, 5725
doi: 10.1021/acsaem.8b01289 |
20 |
Chen J. D. ; Zheng F. ; Zhang S. J. ; Fisher A. ; Zhou Y. ; Wang Z. Y. ; Li Y.Y. ; Xu B. B. ; Li J. T. ; Sun S. G. ACS Catal. 2018, 8 (12), 11342.
doi: 10.1021/acscatal.8b03489 |
21 |
Chemelewski W. D. ; Lee H. C. ; Lin J. F. ; Bard A. J. ; Mullins C. B. J. Am. Chem. Soc. 2014, 136 (7), 2843.
doi: 10.1021/ja411835a |
22 |
Lee J. M. ; Baek J. H. ; Gill T. M. ; Shi X. ; Lee S. ; Cho I. S. ; Jung H. S. ; Zheng X. J. Mater. Chem. A 2019, 7 (15), 9019.
doi: 10.1039/c9ta00205g |
23 |
Tolstoy V. P. ; Kuklo L. I. ; Gulina L. B. J. Alloy. Compd. 2019, 786, 198.
doi: 10.1016/j.jallcom.2019.01.324 |
24 |
Zhang X. F. ; Zhang B. Y. ; Liub S. S. ; Kang H. W. ; Kong W. Q. ; Zhang S. R. ; Shen Y. ; Yang B. C. Appl. Surf. Sci. 2018, 436, 974.
doi: 10.1016/j.apsusc.2017.12.078 |
25 |
Zhou S. Q. ; Chen K. Y. ; Huang J. W. ; Wang L. ; Zhang M. Y. ; Bai B. ; Wang Q. Z. Appl. Catal. B 2020, 266, 118513.
doi: 10.1016/j.apcatb.2019.118513 |
26 |
Yang X. D. ; Xu B. ; Zhang S. T. ; Zhao Z. H. ; Sun Y. Q. ; Liu G. N. ; Liu Q. S. ; Li C. C. Int. J. Hydrog. Energy 2020, 45 (16), 9546.
doi: 10.1016/j.ijhydene.2020.01.159 |
27 |
Zheng M. Y. ; Guo K. L. ; Jiang W. J. ; T T. ; Wang X. Y. ; Zhou P. P. ; Du J. ; Zhao Y. Q. ; Xua C. L. ; Hu J. S. Appl. Catal. B: Environ. 2019, 244, 1004.
doi: 10.1016/j.apcatb.2018.12.019 |
28 |
Yin J. ; Jin J. ; Lin H. ; Yin Z. ; Li J. ; Lu M. ; Guo L. ; Xi P. ; Tang Y. ; Yan C. H. Adv. Sci. 2020, 7 (10), 1903070.
doi: 10.1002/advs.201903070 |
29 |
Newman S. P. ; Jones W. New J. Chem. 1998, 22 (2), 105.
doi: 10.1039/a708319j |
30 |
Yan L. T. ; Cao L. ; Dai P. C. ; Gu X. ; Liu D. D. ; Li L. J. ; Wang Y. ; Zhao X. B. Adv. Funct. Mater. 2017, 27 (40)
doi: 10.1002/adfm.201703455 |
31 |
Zhang X. H. ; Cockreham C. B. ; Yilmaz E. ; Li G. N. ; Li N. L. ; Ha S. ; Fu L. J. ; Qi J. Q. ; Xu H. W. ; Wu D. J. Phys. Chem. Lett. 2020, 11 (9), 3745.
doi: 10.1021/acs.jpclett.0c00865 |
32 |
Fang X. Q. ; Han S. C. ; Liu D. K. ; Zhu Y. F. Chem. Phys. Lett. 2020, 746, 137282.
doi: 10.1016/j.cplett.2020.137282 |
33 |
Chen X. ; Wang H. ; Meng R. ; Xia B. ; Ma Z. ACS Appl. Energy Mater. 2020, 3 (2), 1305.
doi: 10.1021/acsaem.9b02352 |
34 |
Zhang J. ; Si C. H. ; Kou T. Y. ; Wang J. F. ; Zhang Z. H. Sustain. Energ. Fuels 2020, 4 (6), 2625.
doi: 10.1039/c9se01312a |
35 |
Hu Y. W. ; Yang H. ; Chen J. J. ; Xiong T. Z. ; Balogun M. S. J. T. ; Tong Y. X. ACS Appl. Mater. Interfaces 2019, 11 (5), 5152.
doi: 10.1021/acsami.8b20717 |
36 |
Lewis N. S. Science 2016, 351 (6271), aad1920.
doi: 10.1126/science.aad1920 |
37 |
Chen D. ; Liu Z. F. ; Zhou M. ; Wu P. D. ; Wei J. D. J. Alloy. Compd. 2018, 742, 918.
doi: 10.1016/j.jallcom.2018.01.334 |
38 |
Malathi A. ; Madhavan J. ; Ashokkumar M. ; Arunachalam P. Appl. Catal. A: Gen. 2018, 555, 47.
doi: 10.1016/j.apcata.2018.02.010 |
39 |
Ye S. ; Ding C. ; Chen R. ; Fan F. ; Fu P. ; Yin H. ; Wang X. ; Wang Z. ; Du P. ; Li C. J. Am. Chem. Soc. 2018, 140 (9), 3250.
doi: 10.1021/jacs.7b10662 |
40 |
Wang Q. ; He J. ; Shi Y. ; Zhang S. ; Niu T. ; She H. ; Bi Y. ; Lei Z. Appl. Catal. B 2017, 214, 158.
doi: 10.1016/j.apcatb.2017.05.044 |
41 |
Wu P. ; Liu Z. ; Chen D. ; Zhou M. ; Wei J. Appl. Surf. Sci. 2018, 440, 1101.
doi: 10.1016/j.apsusc.2018.01.292 |
42 |
Huang J. ; Yue P. ; Wang L. ; She H. ; Wang Q. Chin. J. Catal. 2019, 40 (10), 1408.
doi: 10.1016/s1872-2067(19)63399-1 |
43 |
Shen L. J. ; Cao Y. N. ; Du Z. J. ; Zhao W. T. ; Lin K. ; Jiang L. L. Appl. Surf. Sci. 2017, 425, 212.
doi: 10.1016/j.apsusc.2017.06.295 |
44 |
Guo Y. D. ; Li C. X. ; Gong Z. H. ; Guo Y. P. ; Wang X. G. ; Gao B. ; Qin W. J. ; Wang G. H. J. Hazard. Mater. 2020, 397, 122580.
doi: 10.1016/j.jhazmat.2020.122580 |
45 |
Fu X. H. ; Jia L. C. ; Wang A. L. ; Cao H. J. ; Ling Z. C. ; Liu C. Q. ; Shi E. ; Wu Z. C. ; Li B. ; Zhang J. Icarus 2020, 336, 113435.
doi: 10.1016/j.icarus.2019.113435 |
46 |
Fan J. Y. ; Zhao Z. W. ; Ding Z. X. ; Liu J. RSC Adv. 2018, 8 (13), 7269.
doi: 10.1039/c7ra12615h |
47 |
Fracchia M. ; Visibile A. ; Ahlberg E. ; Vertova A. ; Minguzzi A. ; Ghigna P. ; Rondinini S. ACS Appl. Energy Mater. 2018, 1 (4), 1716.
doi: 10.1021/acsaem.8b00209 |
48 |
Lima A. L. D. ; Batalha D. C. ; Fajardo H. V. ; Rodrigues J. L. ; Pereira M. C. ; Silva A. C. Catal. Today 2020, 344, 118.
doi: 10.1016/j.cattod.2018.10.035 |
49 |
Wan C. ; Jiao Y. ; Qiang T. ; Li J. Carbohydr. Polym. 2017, 156, 427.
doi: 10.1016/j.carbpol.2016.09.028 |
50 |
Hien V. X. ; Hung P. T. Mat. Sci. Semicon. Proc. 2020, 107, 104857.
doi: 10.1016/j.mssp.2019.104857 |
51 |
Sakamoto Y. ; Noda Y. ; Ohno K. ; Koike K. ; Fujii K. ; Suzuki T. M. ; Morikawa T. ; Nakamura S. Phys. Chem. Chem. Phys. 2019, 21 (34), 18486.
doi: 10.1039/c9cp00157c |
52 |
Huang Z. X. ; Han F. S. ; Li M. T. ; Zhou Z. H. ; Guan X. J. ; Guo L. J. Comp. Mater. Sci. 2019, 169, 109110.
doi: 10.1016/j.commatsci.2019.109110 |
53 |
Dutrizac J. E. ; Soriano C. Hydrometallurgy 2018, 176, 87.
doi: 10.1016/j.hydromet.2018.01.015 |
54 |
Fortunato L. F. ; Zubieta C. E. ; Fuente S. A. ; Belelli P. G. ; Ferullo R. M. Appl. Surf. Sci. 2016, 387, 894.
doi: 10.1016/j.apsusc.2016.07.011 |
55 |
Yin H. ; Wu Y. L. ; Hou J. T. ; Yan X. R. ; Li Z. H. ; Zhu C. W. ; Zhang J. ; Feng X. H. ; Tan W. F. ; Liu F. Chem. Geol. 2020, 532
doi: 10.1016/j.chemgeo.2019.119378 |
56 |
Suzuki T. M. ; Nonaka T. ; Suda A. ; Suzuki N. ; Matsuoka Y. ; Arai T. ; Sato S. ; Morikawa T. Sustain. Energ. Fuels 2017, 1 (3), 636.
doi: 10.1039/c7se00043j |
57 |
Snow C. L. ; Smith S. J. ; Lang B. E. ; Shi Q. ; Boerio-Goates J. ; Woodfield B. F. ; Navrotsky A. J. Chem. Thermodyn. 2011, 43 (2), 190.
doi: 10.1016/j.jct.2010.08.022 |
58 |
Li Z. Y. ; Liu G. G. ; Su Q. ; Jin X. Y. ; Wen X. Q. ; Zhang G. J. ; Huang R. Arab. J. Chem. 2018, 11 (6), 910.
doi: 10.1016/j.arabjc.2018.02.005 |
59 |
Yang L. S. ; Liu Y. ; Li J. B. ; Du G. P. J. Alloy. Compd. 2018, 763, 134.
doi: 10.1016/j.jallcom.2018.05.305 |
60 |
Wang Y. C. ; Gu Y. ; Li H. M. ; Ye M. X. ; Qin W. X. ; Zhang H. M. ; Wang G. Z. ; Zhang Y. X. ; Zhao H. J. Chem. Eng. J. 2020, 392
doi: 10.1016/j.cej.2019.123773 |
61 |
Ma P. ; Luo S. ; Luo Y. ; Huang X. ; Yang M. ; Zhao Z. ; Yuan F. ; Chen M. ; Ma J. J. Colloid Interface Sci. 2020, 574, 241.
doi: 10.1016/j.jcis.2020.04.058 |
62 |
Chowdhury D. R. ; Spiccia L. ; Amritphale S. S. ; Paul A. ; Singh A. J. Mater. Chem. A 2016, 4 (10), 3655.
doi: 10.1039/c6ta00313c |
63 |
Lee J. ; Lee H. ; Lim B. J. Ind. Eng. Chem. 2018, 58, 100.
doi: 10.1016/j.jiec.2017.09.013 |
64 |
Yaw C. S. ; Tang J. ; Soh A. K. ; Chong M. N. Chem. Eng. J. 2020, 380
doi: 10.1016/j.cej.2019.122501 |
65 |
Wang L. ; Nguyen N. T. ; Zhang Y. ; Bi Y. ; Schmuki P. ChemSusChem 2017, 10 (13), 2720.
doi: 10.1002/cssc.201700522 |
66 |
Kanan M. W. ; Nocera D. G. Science 2008, 321 (5892), 1072.
doi: 10.1126/science.1162018 |
67 |
Shi X. J. ; Zhang K. ; Park J. H. Int. J. Hydrog. Energy 2013, 38 (29), 12725.
doi: 10.1016/j.ijhydene.2013.07.057 |
68 |
Ponomarev E. A. ; Peter L. M. J. Electroanal. Chem. 1995, 396 (1-2), 219.
doi: 10.1016/0022-0728(95)04115-5 |
69 |
Zhan F. Q. ; Yang Y. H. ; Liu W. H. ; Wang K. K. ; Li W. Z. ; Li J. ACS Sustain. Chem. Eng. 2018, 6 (6), 7789.
doi: 10.1021/acssuschemeng.8b00776 |
70 |
Xiao J. R. ; Fan L. L. ; Huang Z. L. ; Zhong J. ; Zhao F. G. ; Xu K. J. ; Zhou S. F. ; Zhan G. W. Chin. J. Catal. 2020, 41 (11), 1761.
doi: 10.1016/s1872-2067(20)63618-x |
71 |
Jian J. X. ; Shi Y. C. ; Syväjärvi M. ; Yakimova R. ; Sun J. W. Sol. RRL 2019, 4 (1), 1900364.
doi: 10.1002/solr.201900364 |
72 |
Zhang B. ; Wang L. ; Zhang Y. ; Ding Y. ; Bi Y. Angew. Chem. Int. Ed. 2018, 57 (8), 2248.
doi: 10.1002/anie.201712499 |
73 |
She H.D. ; Yue P. F. ; Huang J. W. ; Wang L. ; Wang Q. Z. Chem. Eng. J. 2020, 392
doi: 10.1016/j.cej.2019.123703 |
74 |
Wang L. ; Yang Y. ; Zhang Y. J. ; Rui Q. ; Zhang B. B. ; Shen Z. Q. ; Bi Y. P. J. Mater. Chem. A 2017, 5 (32), 17056.
doi: 10.1039/c7ta05318e |
75 |
Bazri B. ; Kowsari E. ; Seifvand N. ; Naseri N. J. Electroanal. Chem. 2019, 843, 1.
doi: 10.1016/j.jelechem.2019.04.069 |
76 |
Zhang X. F. ; Li H. ; Kong W. Q. ; Liu H. L. ; Fan H. B. ; Wang M. K. Electrochim. Acta 2019, 300, 77.
doi: 10.1016/j.electacta.2019.01.073 |
77 |
Singh A. P. ; Saini N. ; Mehta B. R. ; Hellman A. ; Iandolo B. ; Wickman B. Catal. Today 2019, 321-322, 87.
doi: 10.1016/j.cattod.2018.03.041 |
78 |
Zhou M. ; Liu Z. H. ; Li X. F. ; Liu Z. F. Ind. Eng. Chem. Res. 2018, 57 (18), 6210.
doi: 10.1021/acs.iecr.8b00358 |
79 |
Chen D. ; Liu Z. ; Zhang S. Appl. Catal. B: Environ. 2020, 265
doi: 10.1016/j.apcatb.2019.118580 |
80 |
Abel A. J. ; Patel A. M. ; Smolin S. Y. ; Opasanont B. ; Baxter J. B. J. Mater. Chem. A 2016, 4 (17), 6495.
doi: 10.1039/c6ta01862a |
81 |
Li Z. H. ; Feng S. L. ; Liu S. Y. ; Li X. ; Wang L. ; Lu W. Q. Nanoscale 2015, 7 (45), 19178.
doi: 10.1039/c5nr06212h |
82 |
Deng J. J. ; Zhang Q. Z. ; Feng K. ; Lan H. W. ; Zhong J. ; Chaker M. ; Ma D. ChemSusChem 2018, 11 (21), 3783.
doi: 10.1002/cssc.201801751 |
83 |
Huang J. W. ; Ding Y. ; Luo X. ; Feng Y. Y. J. Catal. 2016, 333, 200.
doi: 10.1016/j.jcat.2015.11.003 |
84 |
Yan J. Q. ; Li P. ; Ji Y. J. ; Bian H. ; Li Y. Y. ; Liu S. Z. J. Catal. 2017, 5 (40), 21478.
doi: 10.1039/c7ta07208b |
85 |
Ma Z. Z. ; Hou H. L. ; Song K. ; Fang Z. ; Wang L. ; Gao F. M. ; Yang Z. B. ; Tang B. ; Yang W. Y. ChemElectroChem 2018, 5 (23), 3660.
doi: 10.1002/celc.201801233 |
86 |
Shi Q. ; Liu Q. ; Ma Y. ; Fang Z. ; Liang Z. ; Shao G. ; Tang B. ; Yang W. ; Qin L. ; Fang X. Adv. Energy Mater. 2020, 10 (10)
doi: 10.1002/aenm.201903854 |
87 |
Zeng G. H. ; Hou L. Q. ; Zhang J. ; Zhu J. Q. ; Yu X. ; Fu X. H. ; Zhu Y. ; Zhang Y. M. ChemCatChem 2020, 12, 3769.
doi: 10.1002/cctc.202000382 |
88 |
Kim J. Y. ; Youn D. H. ; Kang K. ; Lee J. S. Angew. Chem. Int. Ed. 2016, 55 (36), 10854.
doi: 10.1002/anie.201605924 |
89 |
Rosenberg S. P. ; Armstrong L. Light Metals 2016, 1, 235.
doi: 10.1007/978-3-319-48176-0_31 |
90 |
She H. D. ; Yue P. F. ; Ma X. Y. ; Huang J. W. ; Wang L. ; Wang Q. Z. Appl. Catal. B. 2020, 263, 118280.
doi: 10.1016/j.apcatb.2019.118280 |
91 |
Reichle W. T. Solid State Ion 1986, 22 (1), 135.
doi: 10.1016/0167-2738(86)90067-6 |
92 |
Vanderlaan R. K. ; White J. L. ; Hem S. L. J. Pharm. Sci. 1982, 71 (7), 780.
doi: 10.1002/jps.2600710715 |
93 |
Allmann R. J. H. P. Neues Jahrb. Miner. Monatsh. 1969, 12, 544.
doi: 10.1016/0927-7757(96)03542-X |
94 |
Taylor H. F. W. Mineral. Mag. 1969, 37, 338.
doi: 10.1107/S0567740870002443 |
95 |
Pachayappan L. ; Nagendran S. ; Kamath P. V. Cryst. Growth Des. 2017, 17 (5), 2536.
doi: 10.1021/acs.cgd.7b00071 |
96 |
Dewangan N. ; Hui W. M. ; Jayaprakash S. ; Bawah A.-R. ; Poerjoto A. J. ; Jie T. ; Jangam A. ; Hidajat K. ; Kawi S. Catal. Today 2020, 356, 490.
doi: 10.1016/j.cattod.2020.06.020 |
97 |
Guo J. ; Yang X. ; Bai S. ; Xiang X. ; Luo R. ; He J. ; Chen A. J. Colloid Interface Sci. 2019, 540, 9.
doi: 10.1016/j.jcis.2018.12.069 |
98 |
Fan G. ; Li F. ; Evans D. G. ; Duan X. Chem. Soc. Rev. 2014, 43 (20), 7040.
doi: 10.1039/c4cs00160e |
99 |
Gao R. ; Yan D. Adv. Energy Mater. 2019, 10 (11)
doi: 10.1002/aenm.201900954 |
100 |
Wang Q. ; O'Hare D. Chem. Rev. 2012, 112 (7), 4124.
doi: 10.1021/cr200434v |
101 |
Zhou W. ; Jiang T. ; Zhao Y. ; Xu C. ; Pei C. ; Xue H. J. Colloid Interface Sci. 2019, 549, 42.
doi: 10.1016/j.jcis.2019.04.026 |
102 |
Youn D. H. ; Park Y. B. ; Kim J. Y. ; Magesh G. ; Jang Y. J. ; Lee J. S. J. Power Sources 2015, 294, 437.
doi: 10.1016/j.jpowsour.2015.06.098 |
103 |
Wang Q. ; Niu T. ; Wang L. ; Huang J. ; She H. Chin. J. Catal. 2018, 39 (4), 613.
doi: 10.1016/s1872-2067(17)62987-5 |
104 |
Lv X. W. ; Xiao X. ; Cao M. L. ; Bu Y. ; Wang C. Q. ; Wang M. K. ; Shen Y. Appl. Surf. Sci. 2018, 439, 1065.
doi: 10.1016/j.apsusc.2017.12.182 |
105 |
Zhu Y. ; Ren J. ; Yang X. ; Chang G. ; Bu Y. ; Wei G. ; Han W. ; Yang D. J. Mater. Chem. A 2017, 5 (20), 9952.
doi: 10.1039/c7ta02179h |
106 |
Bai S. ; Yang X. ; Liu C. ; Xiang X. ; Luo R. ; He J. ; Chen A. ACS Sustain. Chem. Eng. 2018, 6 (10), 12906.
doi: 10.1021/acssuschemeng.8b02267 |
107 |
Chen H. ; Wang S. ; Wu J. ; Zhang X. ; Zhang J. ; Lyu M. ; Luo B. ; Qian G. ; Wang L. J. Mater. Chem. A 2020, 8 (26), 13231.
doi: 10.1039/d0ta04572a |
108 |
Ning F. ; Shao M. ; Xu S. ; Fu Y. ; Zhang R. ; Wei M. ; Evans D. G. ; Duan X. Energy Environ. Sci. 2016, 9 (8), 2633.
doi: 10.1039/c6ee01092j |
109 |
Guo J. ; Mao C. Y. ; Zhang R. K. ; Shao M. F. ; Wei M. ; Feng P. Y. J. Mater. Chem. A 2017, 5 (22), 11016.
doi: 10.1039/c7ta00770a |
110 |
Sayed R. A. ; Abd El Hafiz S. E. ; Gamal N. ; GadelHak Y. ; El Rouby W. M. A. J. Alloy. Compd. 2017, 728, 1171.
doi: 10.1016/j.jallcom.2017.09.083 |
111 |
Arif M. ; Yasin G. ; Shakeel M. ; Mushtaq M. A. ; Ye W. ; Fang X. ; Ji S. ; Yan D. Mater. Chem. Front. 2019, 3 (3), 520.
doi: 10.1039/c8qm00677f |
112 |
Cui W. C. ; Bai H. Y. ; Shang J. P. ; Wang F. G. ; Xu D. B. ; Ding J. R. ; Fan W. Q. ; Shi W. D. Electrochim. Acta 2020, 349, 136383.
doi: 10.1016/j.electacta.2020.136383 |
113 |
Zhu Y. ; Zhao X. ; Li J. ; Zhang H. ; Chen S. ; Han W. ; Yang D. J. Alloy. Compd. 2018, 764, 341.
doi: 10.1016/j.jallcom.2018.06.064 |
114 |
Huang J. W. ; Hu G. W. ; Ding Y. ; Pang M. C. ; Ma B. C. J. Catal. 2016, 340, 261.
doi: 10.1016/j.jcat.2016.05.007 |
115 |
AlSalka Y. ; Granone L. I. ; Ramadan W. ; Hakki A. ; Dillert R. ; Bahnemann D. W. Appl. Catal. B: Environ. 2019, 244, 1065.
doi: 10.1016/j.apcatb.2018.12.014 |
116 |
Singh D. ; Tabari T. ; Ebadi M. ; Trochowski M. ; Baris Yagci M. ; Macyk W. Appl. Surf. Sci. 2019, 471, 1017.
doi: 10.1016/j.apsusc.2018.12.082 |
117 |
Lam S. M. ; Sin J. C. ; Mohamed A. R. Mater. Res. Bull. 2017, 90, 15.
doi: 10.1016/j.materresbull.2016.12.052 |
118 |
McDonnell K. A. ; Wadnerkar N. ; English N. J. ; Rahman M. ; Dowling D. Chem. Phys. Lett. 2013, 572, 78.
doi: 10.1016/j.cplett.2013.04.024 |
119 |
Chen G. ; Zhu Y. ; Chen H. M. ; Hu Z. ; Hung S. F. ; Ma N. ; Dai J. ; Lin H. J. ; Chen C. T. ; Zhou W. ; et al Adv Mater. 2019, 31 (28), 1900883.
doi: 10.1002/adma.201900883 |
120 |
Wang W. ; Xu M. G. ; Xu X. M. ; Zhou W. ; Shao Z. P. Angew. Chem. Int. Ed. 2020, 59 (1), 136.
doi: 10.1002/anie.201900292 |
121 |
Huang Y. ; Liu J. ; Deng Y. ; Qian Y. ; Jia X. ; Ma M. ; Yang C. ; Liu K. ; Wang Z. ; Qu S. ; et al J. Semicond. 2020, 41 (1), 011701.
doi: 10.1088/1674-4926/41/1/011701 |
122 |
Han B. ; Grimaud A. ; Giordano L. ; Hong W. T. ; Diaz-Morales O. ; Yueh-Lin L. ; Hwang J. ; Charles N. ; Stoerzinger K. A. ; Yang W. ; et al J. Phys. Chem. C 2018, 122 (15), 8445.
doi: 10.1021/acs.jpcc.8b01397 |
123 |
Wang Z. ; Tan S. P. ; Xiong Y. P. ; Wei J. H. Prog. Nat. Sci. Mater. 2018, 28 (4), 399.
doi: 10.1016/j.pnsc.2018.03.002 |
124 |
Khan R. ; Mehran M. T. ; Naqvi S. R. ; Khoja A. H. ; Mahmood K. ; Shahzad F. ; Hussain S. Int. J. Energy Res. 2020, 44 (12), 9714.
doi: 10.1002/er.5635 |
125 |
Hu C. ; Bai Y. ; Xiao S. ; Zhang T. ; Meng X. ; Ng W. K. ; Yang Y. ; Wong K. S. ; Chen H. ; Yang S. J. Mater. Chem. A 2017, 5 (41), 21858.
doi: 10.1039/C7TA07139F |
126 |
Wu X. ; Li H. ; Wang X. ; Jiang L. ; Xi J. ; Du G. ; Ji Z. J. Alloy. Compd. 2019, 783, 643.
doi: 10.1016/j.jallcom.2018.12.345 |
127 |
Xie J. L. ; Guo C. X. ; Yang P. P. ; Wang X. D. ; Liu D. Y. ; Li C. M. Nano Energy 2017, 31, 28.
doi: 10.1016/j.nanoen.2016.10.048 |
128 |
Khoomortezaei S. ; Abdizadeh H. ; Golobostanfard M. R. ACS Appl. Energy Mater. 2019, 2 (9), 6439.
doi: 10.1021/acsaem.9b01041 |
[1] | 吴明亮, 章烨晖, 付战照, 吕之阳, 李强, 王金兰. 原子尺度钴基氮碳催化剂对析氧反应的构效关系的研究[J]. 物理化学学报, 2023, 39(1): 2207007 -0 . |
[2] | 高增强, 王聪勇, 李俊俊, 朱亚廷, 张志成, 胡文平. 导电金属有机框架材料在电催化中的成就,挑战和机遇[J]. 物理化学学报, 2021, 37(7): 2010025 - . |
[3] | 徐冰妍, 张应, 皮业灿, 邵琪, 黄小青. 镍基金属有机框架及其衍生物在电催化析氧反应中的研究进展[J]. 物理化学学报, 2021, 37(7): 2009074 - . |
[4] | 高学庆, 杨树姣, 张伟, 曹睿. 胺和水插层磷酸锰仿生模拟氢键网络用于电催化水氧化[J]. 物理化学学报, 2021, 37(7): 2007031 - . |
[5] | 闫大强, 张林, 陈祖鹏, 肖卫平, 杨小飞. 镍基金属有机框架衍生的双功能电催化剂用于析氢和析氧反应[J]. 物理化学学报, 2021, 37(7): 2009054 - . |
[6] | 张楚风,陈哲伟,连跃彬,陈宇杰,李沁,顾银冬,陆永涛,邓昭,彭扬. 泡沫铜基底原位生长的铜基导电金属有机框架作为双功能电催化剂[J]. 物理化学学报, 2019, 35(12): 1404 -1411 . |
[7] | 罗盼,孙芳,邓菊,许海涛,张慧娟,王煜. NiS-Ni3S2树状异质结阵列在析氧反应中的应用[J]. 物理化学学报, 2018, 34(12): 1397 -1404 . |
[8] | 王海燕, 石高全. 层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用[J]. 物理化学学报, 2018, 34(1): 22 -35 . |
[9] | 玄翠娟,王杰,朱静,王得丽. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2017, 33(1): 149 -164 . |
[10] | 王森林, 王丽品, 张振洪. Ni/NiCo2O4电极的制备及其析氧反应性能[J]. 物理化学学报, 2013, 29(05): 981 -988 . |
[11] | 杜卫平, 李臻, 冷文华, 许宜铭. 氧化铁和羟基氧化铁光催化还原银离子[J]. 物理化学学报, 2009, 25(08): 1530 -1534 . |
[12] | 李海玲;王文静;亢国虎;黄金昭;徐征. 反应压强变化对Fe∶NiOx阳极催化薄膜性质的影响[J]. 物理化学学报, 2006, 22(03): 330 -334 . |
|