物理化学学报 >> 2021, Vol. 37 >> Issue (7): 2009074.doi: 10.3866/PKU.WHXB202009074
所属专题: 电催化
徐冰妍1, 张应1, 皮业灿2, 邵琪2, 黄小青1,*()
收稿日期:
2020-09-23
录用日期:
2020-10-26
发布日期:
2020-10-30
通讯作者:
黄小青
E-mail:hxq006@xmu.edu.cn
作者简介:
Dr. Xiaoqing Huang is currently a professor at College of Chemistry and Chemical Engineering, Xiamen University. He obtained his B.Sc. in chemistry education from Southwest Normal University (2005) and Ph.D. in organic chemistry from Xiamen University (2011). His current research interests are in the design of nanoscale materials for heterogenous catalysis, electrocatalysis, energy conversion and beyond
基金资助:
Bingyan Xu1, Ying Zhang1, Yecan Pi2, Qi Shao2, Xiaoqing Huang1,*()
Received:
2020-09-23
Accepted:
2020-10-26
Published:
2020-10-30
Contact:
Xiaoqing Huang
E-mail:hxq006@xmu.edu.cn
About author:
Xiaoqing Huang, Email:hxq006@xmu.edu.cnSupported by:
摘要:
作为未来最有潜力的制氢技术之一,电解水为解决环境污染和能源危机等问题提供了一种有效的解决途径。然而,阳极析氧反应缓慢的动力学和较高的过电位使其成为电解水装置效率提升的主要瓶颈。因此,开发高活性和高稳定性的析氧反应催化剂对于电解水技术的发展具有重要意义。近年来,镍基金属有机框架材料因其具有丰富可调的拓扑结构、较大的比表面积以及多孔特性,在催化领域受到了越来越多的关注。本文综述了镍基金属有机框架及其衍生材料在析氧催化研究中的最新进展。首先简要介绍了镍基材料在析氧反应中的原理及评价析氧催化剂活性的一些重要参数,并列举了几种镍基金属有机框架材料的结构及其在催化中的优势。随后,结合近年来发表的文献,对单金属、双金属和三金属镍基金属有机框架材料及其衍生物在析氧催化中的研究进展进行了总结与讨论,重点分析了该类材料的设计策略和催化机理。最后对该领域目前所面临的主要挑战以及未来的发展趋势进行了总结与展望。
MSC2000:
徐冰妍, 张应, 皮业灿, 邵琪, 黄小青. 镍基金属有机框架及其衍生物在电催化析氧反应中的研究进展[J]. 物理化学学报, 2021, 37(7): 2009074.
Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis[J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074.
Table 1
Mechanism of OER reaction in acidic and alkaline electrolytes."
Acidic electrolyte | Alkaline electrolyte |
* + H2O → OH* + H+ + e− | * + OH− → OH* + e− |
OH* → O* + H+ + e− | OH* + OH− → O* + H2O + e− |
O* + H2O → OOH* + H+ + e− | O* + OH− → OOH* + e− |
OOH* → O2 + H+ + e− + * | OOH*+ OH− → O2 + H2O + e− + * |
Fig 1
Crystal structures of (a) MOF-74 30, (b) MIL-53 32 and (d) MIL-101 32. (c) Ball-and-stick model of secondary building units of MIL-101 32. (e) 4, 4'-bipyridine as molecular building block for 2D MOF 34. (a) Adapted from Royal Society of Chemistry publisher 30. (b, c) Adapted from Royal Society of Chemistry publisher 32. (e) Adapted from Wiley-VCH publisher 34. "
Fig 2
(a) Synthesis of Ni-BDC/Ni(OH)2 41; (b) synthesis of Fe2O3@Ni-MOF-74 31; (c) synthesis of Ni@NC 42; (d) synthesis of Ni-BDC@NiS 43; (e) synthesis of Ni2P/rGO 44. (a) Adapted from Royal Society of Chemistry publisher 41. (b) Adapted from American Chemical Society publisher 31. (c) Adapted from WILEY-VCH publisher 42. (d) Adapted from American Chemical Society publisher 43. (e) Adapted from Royal Society of Chemistry publisher 44. "
Fig 3
(a) Schematic diagram of the conversion of part Ni-MOF to Ni(OH)2 after the OER 10; (b) OER LSV curves of NF, Ni-MOF, AB & Ni-MOF with different ratios 10; (c) ECSA of Ni-MOF on different substrates 10; (d, e) theoretical calculation of Pt-NC/Ni-MOF heterostructure 48; (f) TEM image of 2D MOF/Ni(OH)2 nanosheets 41; (g) interaction between Ni(OH)2 and Ni-BDC 41; (h) LSV curves and (i) overpotentials of Ni-BDC/Ni(OH)2, Ni(OH)2, Ni-BDC and Ir/C 41. (a–c) Adapted from American Chemical Society publisher 10. (d, e) Adapted from Elsevier publisher 48. (f–i) Adapted from Royal Society of Chemistry publisher 41. "
Fig 4
(a) The illustration of the synthesis of 2D Ni-MOF nanosheet arrays on NF 49; (b) SEM and (c) TEM images of 2D Ni-MOF-250 49; (d) LSV curves of Ni-MOF, Ni-MOF-250, and Ni-MOF-400 49; (e) stability test of Ni-MOF-250 at 270 mV overpotential 49; (f) illustration of the preparation of NF@Ni/C composites 51; (g) SEM and (h) TEM images of NF@Ni/C 51; (i) LSV curves and (j) Tafel plots of NF@Ni/C samples 51. (a–e) Adapted from Royal Society of Chemistry publisher 49. (f–i) Adapted from Royal Society of Chemistry publisher 51. "
Fig 7
(a) One-step method of MIL-100(FeNi)/NF 64; (b) standard reaction free energy diagram of OER process on MIL-100(FeNi) surface 64; (c) the illustration of the synthesis of NiFe-NFF 66; (d) LSV curves and (e) overpotentials of NixFey-MOF-74 and other samples 57. (a, b) Adapted from American Chemical Society publisher 64. (c) Adapted from Wiley-VCH publisher 66. (d, e) Adapted from American Chemical Society publisher 57. "
Fig 8
(a) Two synthesis routes to mixed-metal MOFs 58; (b) The illustration of the synthesis of Fe/Ni-BTC 59; (c) Illustration of the synthesis of CoNi-Cu(BDC) 61. (a) Adapted from Royal Society of Chemistry publisher 58. (b) Adapted from Elsevier publisher 59. (c) Adapted from Royal Society of Chemistry publisher 61. "
Fig 9
(a) Illustration of the synthesis of ultrathin Ni-Fe-MOF NSs 70; (b) AFM image of ultrathin Ni-Fe-MOF NSs 70; (c) overpotentials of Ni-MOF NSs and ultrathin Ni-Fe-MOF NSs 70; (d) illustration of the synthesis of flower-like FexNi1-x-MOF 21; (e) SEM image of flower-like FexNi1-x-MOF 21. (a–c) Adapted from Wiley-VCH publisher 70. (d, e) Adapted from American Chemical Society publisher 21. "
Fig 10
(a, b) TEM images of FeNi@N-CNT 33; (c) TEM image of FeNi@N-CNT after OER measurement for 10 h 33; (d) Potentiostatic measurement of FeNi@N-CNT 33; (d) illustration of the synthesis of Fe-Ni@NC-CNTs 75; (e) SEM image of Fe-Ni@NC-CNTs 75; (g, i) TEM images of Fe-Ni@NC-CNTs 75; (j) LSV curves of Fe-Ni@NC-CNTs 75. (a–d) Adapted from American Chemical Society publisher 33. (e–j) Adapted from Wiley-VCH publisher 75. "
Fig 11
(a) Gibbs free energy diagram of UMOFN surface 37; (b) electronic coupling diagram between Co and Ni 37; (c) illustration of the synthesis of M2-(BDC)2TED@CF 81; (d, e) LSV curves and chronoamperometry curves of M2-(BDC)2TED@CF 81. (a, b) Adapted from Macmillan publisher and Springer Nature publisher 37. (c–e) Adapted from Royal Society of Chemistry publisher 81. "
Fig 13
(a) Illustration of the synthesis of Ni1.4Co0.6P/NCNHMs 88; (b) SEM image of Ni1.4Co0.6P/NCNHMs 88; (c) LSV curves of Ni1.4Co0.6P/NCNHMs and other samples 88; (d) illustration of the synthesis of Ni-Co-S HPNA/CC 90; (e) SEM image of Ni-Co-S HPNA/CC 90; (f) LSV curves and (g) Tafel slope of Ni-Co-S HPNA/CC 90. (a–c) Adapted from American Chemical Society publisher 88. (d–g) Adapted from Elsevier publisher 90. "
Fig 14
(a) Illustration of synthesis of NiCo/Fe3O4/MOF-74 96; (b) free energy diagram of the elementary electrochemical steps on NiCo/Fe3O4 96; (c) HAADF-STEM image of NiCo/Fe3O4 96; (d) LSV curves and (e) Tafel slope of NiCo/Fe3O4/MOF-74 calcined at different temperature 96; (f) illustration of synthesis of FeCoNi-LDH 97; (h) chronopotentiometry curve of FeCo0.5Ni0.5-LDH 97. (a–e) Adapted from American Chemical Society publisher 96. (f, g) Adapted from Elsevier publisher 97. "
Table 2
Comparison of the OER performance of pure Ni-MOF and their derivatives materials."
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec−1) | Ref. | |
Ni-MOFs | AB & Ni-MOF(1:1) | NF | 1 mol∙L−1 | 263 | 65 | |
AB & Ni-MOF(1:1) | GC | 1 mol∙L−1 | 379 | 77 | ||
AB & Ni-MOF(1:1) | FTO | 1 mol∙L−1 | 282 | 66 | ||
Ni-MOF (BTC) | CP | 1 mol∙L−1 | 346 | 64 | ||
Ni-MOF | NF | 1 mol∙L−1 | 320 | 123 | ||
Pt-NC/Ni-MOF | GC | 1 mol∙L−1 | 292 | |||
3D Graphene/Ni-MOF | GC | 0.1 mol∙L−1 | 370 | 91 | ||
Ni-MOF derived oxides/hydroxides/carbonaceous materials | Ni-BDC/Ni(OH)2 | GC | 1 mol∙L−1 | 320 | 41 | |
0.6% (w) Fe2O3@Ni-MOF-74 | CP | 1 mol∙L−1 | 264 | 48 | ||
2D Ni-MOF-250 | NF | 1 mol∙L−1 | 250 (at 50 mA∙cm–2) | 89 | ||
NiO/C@NiFe-LDH | GC | 1 mol∙L−1 | 299 | 45 | ||
NiO | GC | 1 mol∙L−1 | 430 | 81 | ||
Ni(OH)2 | GC | 1 mol∙L−1 | 360 | 111 | ||
Ni@NC | NF | 1 mol∙L−1 | 280 | 45 | ||
NF@Ni/C | NF | 1 mol∙L−1 | 265 | 54 | ||
CNH-D-Ni-MOF | CFP | 1 mol∙L−1 | 320 | 85 | ||
CNH-D-Ni-MOF-400 | CFP | 1 mol∙L−1 | 120 | 75 | ||
Ni@NiO/N-C | GC | 1 mol∙L−1 | 390 | 100 | ||
Ni-MOF derived phosphates/sulfides | Ni-P | GC | 1 mol∙L−1 | 300 | 64 | |
Ni2P/rGO | NF | 1 mol∙L−1 | 250 | 62 | ||
NGO/Ni7S6 | GC | 0.1 mol∙L−1 | 380 | 45 | ||
NiS@N/S-C | CFP | 1 mol∙L−1 | 417 | 48 | ||
Ni-BDC@NiS (12 h) | NF | 1 mol∙L−1 | 330 (at 20 mA∙cm–2) | 62 | ||
Ni-Ni3S2@carbon | GC | 1 mol∙L−1 | 285 | 56 |
Table 3
Comparison of the OER performance of bimetallic and trimetallic Ni-MOFs and their derivatives materials."
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec− | Ref. | |
NiFe-MOF | NiFe-MOF-74 | NF | 1 mol∙L−1 | 223 | 72 | |
FeNi-DOBDC-(Fe/Ni 3:1) | GC | 1 mol∙L−1 | 270 (at 50 mA∙cm−2) | 49 | ||
MIL-100(FeNi) | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 30 | ||
FeNi3-BTC | NF | 1 mol∙L−1 | 236 | 49 | ||
Fe1Ni4-HHTP NWAs | CC | 1 mol∙L−1 | 213 | 96 | ||
Fe2Ni-MIL-88B | NF | 1 mol∙L−1 | 222 | 42 | ||
Fe0.1-Ni-MOF/NF | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 70 | ||
NiFe-MOF/FeCH-NF | NF | 1 mol∙L−1 | 200 | 51 | ||
NiFe-NFF | NF | 1 mol∙L−1 | 250 | 39 | ||
Fe0.38Ni0.62-MOF | CC | 1 mol∙L−1 | 190 | 58 | ||
N-Fe-MOF NSs | GC | 1 mol∙L−1 | 221 | 56 | ||
MFN-MOF (2:1)/NF | NF | 1 mol∙L−1 | 235 (at 50 mA∙cm−2) | 55 | ||
Fe2Ni-MIL-101 | NF | 1 mol∙L−1 | 237 (at 20 mA∙cm−2) | 44 | ||
FeNi@CNF | GC | 1 mol∙L−1 | 356 | 63 | ||
NiFe-MOF derived oxides/hydroxides/carbonaceous materials | Fe-Ni-Ox | GC | 0.1 mol∙L−1 | 584 | 72 | |
NiFe2O4 | NF | 1 mol∙L−1 | 293 | 98 | ||
FeNi3-Fe3O4 NPs/MOF-CNT | GC | 1 mol∙L−1 | 234 | 37 | ||
FeNi@N-CNT | GC | 1 mol∙L−1 | 300 | 48 | ||
Fe-Ni@NC-CNTs | NF | 1 mol∙L−1 | 274 | 45.5 | ||
NiFe-NCs | CFP | 1 mol∙L−1 | 271 | 48 | ||
Ni0.5Fe0.5-HP | NF | 1 mol∙L−1 | 280 | 79 | ||
FeNi/NiFe2O4@NC | GC | 1 mol∙L−1 | 316 | 60 | ||
NiFe@NC | GC | 1 mol∙L−1 | 360 | 60 | ||
NiFe-MOF derived phosphates/sulfides | Fe-Ni-P/rGO-400 | GC | 1 mol∙L−1 | 240 | 63 | |
(NixFe1−x)2P nanocubes | GC | 1 mol∙L−1 | 290 | 44 | ||
Ni-Fe-O-P | GC | 1 mol∙L−1 | 227 | 50 | ||
Ni-Fe-O-B | GC | 1 mol∙L−1 | 243 | 53 | ||
Ni-Fe-O-S | GC | 1 mol∙L−1 | 272 | 70 | ||
NiCo-MOF | NiCo-UMOFNs | GC | 1 mol∙L−1 | 250 | 42 | |
CTGU-10c2 | GC | 1 mol∙L−1 | 240 | 58 | ||
AuNPs@CoNi-MOF | GC | 1 mol∙L−1 | 283 | 83 | ||
M2-(BDC)2TED@CF | CF | 1 mol∙L−1 | 260 | 76 | ||
NiCo-MOF derived materials | NixCo3−xO4/NF | NF | 1 mol∙L−1 | 287 | 88 | |
NCMC | CFP | 1 mol∙L−1 | 290 | 73 | ||
NiCo alloy@C/NixCo1−xO/NF | NF | 1 mol∙L−1 | 300 (at 100 mA∙cm−2) | 106 | ||
CoxNi1−x@CoyNi1−yO@C | GC | 0.1 mol∙L−1 | 126 | |||
CoNi3C/Ni@C | GC | 1 mol∙L−1 | 325 | 68 | ||
NiCo-0.8@N-CNFs-800 | GC | 0.1 mol∙L−1 | 380 | 78 | ||
Co4Ni1P NTs | GC | 1 mol∙L−1 | 245 | 61 | ||
Ni1.4Co0.6P/NCNHMs | 1 mol∙L−1 | 320 | 54.5 | |||
NixCoy-P | NF | 1 mol∙L−1 | 300 (at 35 mA∙cm−2) | 71 | ||
Ni1Co4S@C-1000 | GC | 1 mol∙L−1 | 64 | |||
Ni-Co-S HPNA | CC | 1 mol∙L−1 | 270 | 56 | ||
Co/Ni@C | GC | 0.1 mol∙L−1 | 410 | 101 | ||
Ni-doped CoS2/CFP | CFP | 1 mol∙L−1 | 270 | 79 | ||
Other bimetallic Ni-MOFs and their derivatives | NiCu-MOFNs/NF | NF | 1 mol∙L−1 | 309 (at 100 mA∙cm−2) | 48 | |
Ni/Ni2P/Mo2C@C | GC | 1 mol∙L−1 | 368 | 75 | ||
Ni-Cu@Cu-Ni-MOF | CP | 1 mol∙L−1 | 640 | 98 | ||
Pt-Ni@PCN920 | NF | 1 mol∙L−1 | 59 | |||
UiO-66-NH2-Ni@G | GC | 1 mol∙L−1 | 370 | 45 | ||
Trimetal Ni-MOF and their derivatives | Fe/Ni2.4/Co0.4-MIL-53 | GC | 1 mol∙L−1 | 219 | ||
Co2.36Fe0.19Ni0.45-btca | NF | 1 mol∙L−1 | 292 | 73 | ||
NiCo/Fe3O4/MOF-74 | GC | 1 mol∙L−1 | 238 | 29 | ||
FeCo0.5Ni0.5-LDH | Cu foil | 1 mol∙L−1 | 248 | 38 | ||
NCF-MOF | NF | 0.1 mol∙L−1 | 480 (at 30 mA∙cm−2) | 49 | ||
Ni3S2@MIL-53(NiFeCo)/NF | NF | 1 mol∙L−1 | 236 (at 50 mA∙cm−2) | 15 |
1 |
Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45 (9), 2603.
doi: 10.1039/C5CS00838G |
2 |
Dresselhaus M. S. ; Thomas I. L. Nature 2001, 414 (6861), 332.
doi: 10.1038/35104599 |
3 |
Chu S. ; Majumdar A. Nature 2012, 488 (7411), 294.
doi: 10.1038/nature11475 |
4 |
Kibsgaard J. ; Chorkendorff I. Nat. Energy 2019, 4 (6), 430.
doi: 10.1038/s41560-019-0407-1 |
5 |
McCrory C. C. L. ; Jung S. ; Peters J. C. ; Jaramillo T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977.
doi: 10.1021/ja407115p |
6 |
Dang S. ; Zhu Q. Nat. Rev. Mater. 2018, 3 (1), 17075.
doi: 10.1038/natrevmats.2017.75 |
7 | Chang J. ; Xiao Y. ; Luo Z. ; Ge J. ; Liu C. ; Xing W. Acta Phys. -Chim. Sin. 2016, 32 (7), 1556. |
常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
doi: 10.3866/PKU.WHXB201604291 |
|
8 |
Wang H. F. ; Chen L. ; Pang H. ; Kaskel S. ; Xu Q. Chem. Soc. Rev. 2020, 49 (5), 1414.
doi: 10.1039/c9cs00906j |
9 |
Zhu B. ; Liang Z. ; Xia D. ; Zou R. Energy Storage Mater. 2019, 23, 757.
doi: 10.1016/j.ensm.2019.05.022 |
10 |
Wang X. ; Li B. ; Wu Y. P. ; Tsamis A. ; Yu H. G. ; Liu S. ; Zhao J. ; Li Y. S. ; Li D. S. Inorg. Chem. 2020, 59 (7), 4764.
doi: 10.1021/acs.inorgchem.0c00024 |
11 |
Dong Y. ; Oloman C. W. ; Gyenge E. L. ; Su J. ; Chen L. Nanoscale 2020, 12 (18), 9924.
doi: 10.1039/d0nr02187c |
12 |
Han L. ; Dong S. ; Wang E. Adv. Mater. 2016, 28 (42), 9266.
doi: 10.1002/adma.201602270 |
13 |
Gao R. ; Yan D. Adv. Energy Mater. 2020, 10 (11), 1.
doi: 10.1002/aenm.201900954 |
14 | Wang L. ; Sun W. ; Liu C. Acta Phys. -Chim. Sin. 2019, 35 (7), 697. |
王露; 孙威; 刘超. 物理化学学报, 2019, 35 (7), 697.
doi: 10.3866/PKU.WHXB201807071 |
|
15 |
Tang H. ; Zheng M. ; Hu Q. ; Chi Y. ; Xu B. ; Zhang S. ; Xue H. ; Pang H. J. Mater. Chem. A 2018, 6 (29), 13999.
doi: 10.1039/c8ta03644f |
16 |
Xuan C. ; Zhang J. ; Wang J. ; Wang D. Chem. Asian J. 2020, 15 (7), 958.
doi: 10.1002/asia.20190172 |
17 |
Medford A. J. ; Vojvodic A. ; Hummelshøj J. S. ; Voss J. ; Abild-Pedersen F. ; Studt F. ; Bligaard T. ; Nilsson A. ; Nørskov J. K. J. Catal. 2015, 328, 36.
doi: 10.1016/j.jcat.2014.12.033 |
18 |
Man I. C. ; Su H. ; Calle-vallejo F. ; Hansen H. A. ; Martínez J. I. ; Inoglu N. G. ; Kitchin J. ; Jaramillo T. F. ; Nørskov J. K. ; Rossmeisl J. ChemCatChem 2011, 3 (7), 1159.
doi: 10.1002/cctc.201000397 |
19 |
Bode H. ; Dehmelt K. ; Witte J. Electrochim. Acta 1966, 11 (8), 1079.
doi: 10.1016/0013-4686(66)80045-2 |
20 |
Huang J. ; Li Y. ; Zhang Y. ; Rao G. ; Wu C. ; Hu Y. ; Wang X. ; Lu R. ; Li Y. ; Xiong J. Angew. Chem. Int. Ed. 2019, 58 (48), 17458.
doi: 10.1002/anie.201910716 |
21 |
Wan Z. ; Yang D. ; Chen J. ; Tian J. ; Isimjan T. T. ; Yang X. ACS Appl. Nano Mater. 2019, 2 (10), 6334.
doi: 10.1021/acsanm.9b01330 |
22 |
Duan J. ; Chen S. ; Zhao C. Nat. Commun. 2017, 8, 1.
doi: 10.1038/ncomms15341 |
23 |
Li Y. -F. ; Selloni A. ACS Catal. 2014, 4 (4), 1148.
doi: 10.1021/cs401245q |
24 |
Diaz-Morales O. ; Ledezma-Yanez I. ; Koper M. T. M. ; Calle-Vallejo F. ACS Catal. 2015, 5 (9), 5380.
doi: 10.1021/acscatal.5b01638 |
25 |
Li W. H. ; Lv J. ; Li Q. ; Xie J. ; Ogiwara N. ; Huang Y. ; Jiang H. ; Kitagawa H. ; Xu G. ; Wang Y. J. Mater. Chem. A 2019, 7 (17), 10431.
doi: 10.1039/c9ta02169h |
26 |
Yeo B. S. ; Bell A. T. J. Phys. Chem. C 2012, 116 (15), 8394.
doi: 10.1021/jp3007415 |
27 |
Jiao Y. ; Zheng Y. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2015, 44 (8), 2060.
doi: 10.1039/C4CS00470A |
28 |
Suen N. ; Hung S. ; Quan Q. ; Zhang N. ; Xu Y. ; Chen H. Chem. Soc. Rev. 2017, 46 (2), 337.
doi: 10.1039/C6CS00328A |
29 |
Dietzel P. D. C. ; Panella B. ; Hirscher M. ; Blom R. ; Fjellvåg H. Chem. Commun. 2006, 1 (9), 959.
doi: 10.1039/b515434k |
30 |
Palomino Cabello C. ; Gómez-Pozuelo G. ; Opanasenko M. ; Nachtigall P. ; Čejka J. ChemPlusChem 2016, 81 (8), 828.
doi: 10.1002/cplu.201600168 |
31 |
Gao Z. ; Yu Z. W. ; Liu F. Q. ; Yu Y. ; Su X. M. ; Wang L. ; Xu Z. Z. ; Yang Y. L. ; Wu G. R. ; Feng X. F. ; et al Inorg. Chem. 2019, 58 (17), 11500.
doi: 10.1021/acs.inorgchem.9b01301 |
32 |
Janiak C. ; Vieth J. K. New J. Chem. 2010, 34 (11), 2366.
doi: 10.1039/c0nj00275e |
33 |
Tao Z. ; Wang T. ; Wang X. ; Zheng J. ; Li X. ACS Appl. Mater. Interfaces 2016, 8 (51), 35390.
doi: 10.1021/acsami.6b13411 |
34 |
Lin Y. ; Chen G. ; Wan H. ; Chen F. ; Liu X. ; Ma R. Small 2019, 15 (18), 1.
doi: 10.1002/smll.201900348 |
35 |
Yaghi O. M. ; Li H. J. Am. Chem. Soc. 1995, 117 (41), 10401.
doi: 10.1021/ja00146a033 |
36 |
Ping D. ; Feng X. ; Zhang J. ; Geng J. ; Dong X. ChemElectroChem 2017, 4 (12), 3037.
doi: 10.1002/celc.201700901 |
37 |
Zhao S. ; Wang Y. ; Dong J. ; He C. -T. ; Yin H. ; An P. ; Zhao K. ; Zhang X. ; Gao C. ; Zhang L. ; et al Nat. Energy 2016, 1 (12), 16184.
doi: 10.1038/nenergy.2016.184 |
38 |
Shuai C. ; Mo Z. ; Niu X. ; Zhao P. ; Dong Q. ; Chen Y. ; Liu N. ; Guo R. J. Electrochem. Soc. 2020, 167 (2), 026512.
doi: 10.1149/1945-7111/ab6b10 |
39 |
Stock N. ; Biswas S. Chem. Rev. 2012, 112 (2), 933.
doi: 10.1021/cr200304e |
40 |
Braga D. ; Giaffreda S. L. ; Grepioni F. ; Pettersen A. ; Maini L. ; Curzi M. ; Polito M. Dalt. Trans. 2006, 10, 1249.
doi: 10.1039/b516165g |
41 |
Zhu D. ; Liu J. ; Wang L. ; Du Y. ; Zheng Y. ; Davey K. ; Qiao S. Z. Nanoscale 2019, 11 (8), 3599.
doi: 10.1039/c8nr09680e |
42 |
Xu Y. ; Tu W. ; Zhang B. ; Yin S. ; Huang Y. ; Kraft M. ; Xu R. Adv. Mater. 2017, 29 (11), 1.
doi: 10.1002/adma.201605957 |
43 |
He P. ; Xie Y. ; Dou Y. ; Zhou J. ; Zhou A. ; Wei X. ; Li J. R. ACS Appl. Mater. Interfaces 2019, 11 (44), 41595.
doi: 10.1021/acsami.9b16224 |
44 |
Yan L. ; Jiang H. ; Xing Y. ; Wang Y. ; Liu D. ; Gu X. ; Dai P. ; Li L. ; Zhao X. J. Mater. Chem. A 2018, 6 (4), 1682.
doi: 10.1039/c7ta10218f |
45 |
Zhang H. ; Su J. ; Zhao K. ; Chen L. ChemElectroChem 2020, 7 (8), 1805.
doi: 10.1002/celc.202000136 |
46 |
Maruthapandian V. ; Kumaraguru S. ; Mohan S. ; Saraswathy V. ; Muralidharan S. ChemElectroChem 2018, 5 (19), 2795.
doi: 10.1002/celc.201800802 |
47 |
Liu Q. ; Xie L. ; Shi X. ; Du G. ; Asiri A. M. ; Luo Y. ; Sun X. Inorg. Chem. Front. 2018, 5 (7), 1570.
doi: 10.1039/C7QI00808B |
48 |
Guo C. ; Jiao Y. ; Zheng Y. ; Luo J. ; Davey K. ; Qiao S. Z. Chem 2019, 5 (9), 2429.
doi: 10.1016/j.chempr.2019.06.016 |
49 |
Hu Q. ; Huang X. ; Wang Z. ; Li G. ; Han Z. ; Yang H. ; Ren X. ; Zhang Q. ; Liu J. ; He C. J. Mater. Chem. A 2020, 8 (4), 2140.
doi: 10.1039/c9ta12713e |
50 |
Li X. ; Fan M. ; Wei D. ; Wang X. ; Wang Y. J. Electrochem. Soc. 2020, 167 (2), 024501.
doi: 10.1149/1945-7111/ab61eb |
51 |
Sun H. ; Lian Y. ; Yang C. ; Xiong L. ; Qi P. ; Mu Q. ; Zhao X. ; Guo J. ; Deng Z. ; Peng Y. Energy Environ. Sci. 2018, 11 (9), 2363.
doi: 10.1039/c8ee00934a |
52 |
Guo Y. ; Zhou Y. ; Nan Y. ; Li B. ; Song X. ACS Appl. Mater. Interfaces 2020, 12 (11), 12743.
doi: 10.1021/acsami.9b20532 |
53 |
Yu X. Y. ; Feng Y. ; Guan B. ; Lou X. W. D. ; Paik U. Energy Environ. Sci. 2016, 9 (4), 1246.
doi: 10.1039/c6ee00100a |
54 |
Jayaramulu K. ; Masa J. ; Tomanec O. ; Peeters D. ; Ranc V. ; Schneemann A. ; Zboril R. ; Schuhmann W. ; Fischer R. A. Adv. Funct. Mater. 2017, 27 (33), 1.
doi: 10.1002/adfm.201700451 |
55 |
Yang L. ; Gao M. ; Dai B. ; Guo X. ; Liu Z. ; Peng B. Electrochim. Acta 2016, 191, 813.
doi: 10.1016/j.electacta.2016.01.160 |
56 |
Xing J. ; Guo K. ; Zou Z. ; Cai M. ; Du J. ; Xu C. Chem. Commun. 2018, 54 (51), 7046.
doi: 10.1039/c8cc03112f |
57 |
Zheng F. ; Xiang D. ; Li P. ; Zhang Z. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. ACS Sustain. Chem. Eng. 2019, 7 (11), 9743.
doi: 10.1021/acssuschemeng.9b01131 |
58 |
Abednatanzi S. ; Gohari Derakhshandeh P. ; Depauw H. ; Coudert F. -X. ; Vrielinck H. ; Van Der Voort P. ; Leus K. Chem. Soc. Rev. 2019, 48 (9), 2535.
doi: 10.1039/C8CS00337H |
59 |
Zheng F. ; Zhang Z. ; Xiang D. ; Li P. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. J. Colloid Interface Sci. 2019, 555, 541.
doi: 10.1016/j.jcis.2019.08.005 |
60 |
Wang L. J. ; Deng H. ; Furukawa H. ; Gándara F. ; Cordova K. E. ; Peri D. ; Yaghi O. M. Inorg. Chem. 2014, 53 (12), 5881.
doi: 10.1021/ic500434a |
61 |
Ma J. ; Lu B. ; Wang S. ; He W. ; Bai X. ; Wang T. ; Zhang X. ; Li Y. ; Zhang L. ; Chen J. ; et al New J. Chem. 2020, 44 (6), 2459.
doi: 10.1039/c9nj05562b |
62 |
Mohammed-Ibrahim J. J. Power Sources 2020, 448, 227375.
doi: 10.1016/j.jpowsour.2019.227375 |
63 |
Zhang W. ; Li D. ; Zhang L. ; She X. ; Yang D. J. Energy Chem. 2019, 39, 39.
doi: 10.1016/j.jechem.2019.01.017 |
64 |
Li C. ; Liu Y. ; Wang G. ; Guan L. ; Lin Y. ACS Sustain. Chem. Eng. 2019, 7 (8), 7496.
doi: 10.1021/acssuschemeng.9b00264 |
65 |
Ling X. ; Du F. ; Zhang Y. ; Shen Y. ; Li T. ; Alsaedi A. ; Hayat T. ; Zhou Y. ; Zou Z. RSC Adv. 2019, 9 (57), 33558.
doi: 10.1039/c9ra07499f |
66 |
Cao C. ; Ma D. D. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Adv. Funct. Mater. 2019, 29 (6), 1.
doi: 10.1002/adfm.201807418 |
67 |
Yang L. ; Zhu G. ; Wen H. ; Guan X. ; Sun X. ; Feng H. ; Tian W. ; Zheng D. ; Cheng X. ; Yao Y. J. Mater. Chem. A 2019, 7 (15), 8771.
doi: 10.1039/c9ta00819e |
68 |
Du J. ; Xu S. ; Sun L. ; Li F. Chem. Commun. 2019, 55 (98), 14773.
doi: 10.1039/c9cc07433c |
69 |
Huang J. ; Li Y. ; Huang R. -K. ; He C. -T. ; Gong L. ; Hu Q. ; Wang L. ; Xu Y. -T. ; Tian X. -Y. ; Liu S. -Y. ; et al Angew. Chem. 2018, 130 (17), 4722.
doi: 10.1002/ange.201801029 |
70 |
Li F. L. ; Wang P. ; Huang X. ; Young D. J. ; Wang H. F. ; Braunstein P. ; Lang J. P. Angew. Chem. Int. Ed. 2019, 58 (21), 7051.
doi: 10.1002/anie.201902588 |
71 |
Jiang J. ; Zhang C. ; Ai L. Electrochim. Acta 2016, 208, 17.
doi: 10.1016/j.electacta.2016.05.008 |
72 |
Fang Z. ; Hao Z. ; Dong Q. ; Cui Y. J. Nanopart. Res. 2018, 20 (4), 106.
doi: 10.1007/s11051-018-4209-3 |
73 |
Srinivas K. ; Lu Y. ; Chen Y. ; Zhang W. ; Yang D. ACS Sustain. Chem. Eng. 2020, 8 (9), 3820.
doi: 10.1021/acssuschemeng.9b07182 |
74 |
Flahaut E. ; Govindaraj A. ; Peigney A. ; Laurent C. ; Rousset A. ; Rao C. N. R. Chem. Phys. Lett. 1999, 300 (1), 236.
doi: 10.1016/S0009-2614(98)01304-9 |
75 |
Zhao X. ; Pachfule P. ; Li S. ; Simke J. R. J. ; Schmidt J. ; Thomas A. Angew. Chem. Int. Ed. 2018, 57 (29), 8921.
doi: 10.1002/anie.201803136 |
76 |
Zou H. H. ; Yuan C. Z. ; Zou H. Y. ; Cheang T. Y. ; Zhao S. J. ; Qazi U. Y. ; Zhong S. L. ; Wang L. ; Xu A. W. Catal. Sci. Technol. 2017, 7 (7), 1549.
doi: 10.1039/c7cy00035a |
77 |
Fang X. ; Jiao L. ; Zhang R. ; Jiang H. L. ACS Appl. Mater. Interfaces 2017, 9 (28), 23852.
doi: 10.1021/acsami.7b07142 |
78 |
Xuan C. ; Wang J. ; Xia W. ; Zhu J. ; Peng Z. ; Xia K. ; Xiao W. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2018, 6 (16), 7062.
doi: 10.1039/c8ta00410b |
79 |
Zhou W. ; Huang D. D. ; Wu Y. P. ; Zhao J. ; Wu T. ; Zhang J. ; Li D. S. ; Sun C. ; Feng P. ; Bu X. Angew. Chem. Int. Ed. 2019, 58 (13), 4227.
doi: 10.1002/anie.201813634 |
80 |
Hu W. C. ; Shi Y. ; Zhou Y. ; Weng C. ; Younis M. R. ; Pang J. ; Wang C. ; Xia X. H. J. Mater. Chem. A 2019, 7 (17), 10601.
doi: 10.1039/c9ta00847k |
81 |
Li D. J. ; Li Q. H. ; Gu Z. G. ; Zhang J. J. Mater. Chem. A 2019, 7 (31), 18519.
doi: 10.1039/c9ta04554f |
82 |
Shen Y. ; Guo S. G. ; Du F. ; Yuan X. B. ; Zhang Y. ; Hu J. ; Shen Q. ; Luo W. ; Alsaedi A. ; Hayat T. ; et al Nanoscale 2019, 11 (24), 11765.
doi: 10.1039/c9nr01804b |
83 |
Wei X. ; Zhang Y. ; He H. ; Gao D. ; Hu J. ; Peng H. ; Peng L. ; Xiao S. ; Xiao P. Chem. Commun. 2019, 55 (46), 6515.
doi: 10.1039/c9cc02037c |
84 |
Sun D. ; Ye L. ; Sun F. ; García H. ; Li Z. Inorg. Chem. 2017, 56 (9), 5203.
doi: 10.1021/acs.inorgchem.7b00333 |
85 |
Jia X. ; Wang M. ; Liu G. ; Wang Y. ; Yang J. ; Li J. Int. J. Hydrog. Energy 2019, 44 (45), 24572.
doi: 10.1016/j.ijhydene.2019.07.144 |
86 |
Feng C. ; Guo Y. ; Xie Y. ; Cao X. ; Li S. ; Zhang L. ; Wang W. ; Wang J. Nanoscale 2020, 12 (10), 5942.
doi: 10.1039/c9nr10943a |
87 |
Yan L. ; Cao L. ; Dai P. ; Gu X. ; Liu D. ; Li L. ; Wang Y. ; Zhao X. Adv. Funct. Mater. 2017, 27 (40), 1.
doi: 10.1002/adfm.201703455 |
88 |
Fan S. ; Zhang J. ; Wu Q. ; Huang S. ; Zheng J. ; Kong D. ; Chen S. ; Wang Y. ; Ang L. K. ; Shi Y. ; et al J. Phys. Chem. Lett. 2020, 11 (10), 3911.
doi: 10.1021/acs.jpclett.0c00851 |
89 |
Chen B. ; Ma G. ; Zhu Y. ; Wang J. ; Xiong W. ; Xia Y. J. Power Sources 2016, 334, 112.
doi: 10.1016/j.jpowsour.2016.10.022 |
90 |
Chen W. ; Zhang Y. ; Chen G. ; Huang R. ; Wu Y. ; Zhou Y. ; Hu Y. ; Ostrikov K. J. Colloid Interface Sci. 2020, 560, 426.
doi: 10.1016/j.jcis.2019.10.099 |
91 |
Ma X. ; Qi K. ; Wei S. ; Zhang L. ; Cui X. J. Alloys Compd. 2019, 770, 236.
doi: 10.1016/j.jallcom.2018.08.096 |
92 |
Zheng X. ; Song X. ; Wang X. ; Zhang Z. ; Sun Z. ; Guo Y. New J. Chem. 2018, 42 (11), 8346.
doi: 10.1039/c8nj01035h |
93 |
Li X. ; Wang X. ; Zhou J. ; Han L. ; Sun C. ; Wang Q. ; Su Z. J. Mater. Chem. A 2018, 6 (14), 5789.
doi: 10.1039/c7ta10558d |
94 |
Li F. L. ; Shao Q. ; Huang X. ; Lang J. P. Angew. Chem. Int. Ed. 2018, 57 (7), 1888.
doi: 10.1002/anie.201711376 |
95 |
Yuan J. T. ; Hou J. J. ; Liu X. L. ; Feng Y. R. ; Zhang X. M. Dalt. Trans. 2020, 49 (3), 750.
doi: 10.1039/c9dt04295d |
96 |
Wang X. ; Xiao H. ; Li A. ; Li Z. ; Liu S. ; Zhang Q. ; Gong Y. ; Zheng L. ; Zhu Y. ; Chen C. ; et al J. Am. Chem. Soc. 2018, 140 (45), 15336.
doi: 10.1021/jacs.8b08744 |
97 |
Zhang W. Da ; Yu H. ; Li T. ; Hu Q. T. ; Gong Y. ; Zhang D. Y. ; Liu Y. ; Fu Q. T. ; Zhu H. Y. ; et al Appl. Catal. B Environ. 2020, 264, 118532.
doi: 10.1016/j.apcatb.2019.118532 |
98 |
Ahn W. ; Park M. G. ; Lee D. U. ; Seo M. H. ; Jiang G. ; Cano Z. P. ; Hassan F. M. ; Chen Z. Adv. Funct. Mater. 2018, 28 (28), 1.
doi: 10.1002/adfm.201802129 |
99 |
Yuan B. ; Li C. ; Guan L. ; Li K. ; Lin Y. J. Power Sources 2020, 451, 227295.
doi: 10.1016/j.jpowsour.2019.227295 |
100 |
Xie A. ; Du J. ; Tao F. ; Tao Y. ; Xiong Z. ; Luo S. ; Li X. ; Yao C. Electrochim. Acta 2019, 305, 338.
doi: 10.1016/j.electacta.2019.03.073 |
101 |
Xie A. ; Zhang J. ; Tao X. ; Zhang J. ; Wei B. ; Peng W. ; Tao Y. ; Luo S. Electrochim. Acta 2019, 324, 134814.
doi: 10.1016/j.electacta.2019.134814 |
102 |
Senthil Raja D. ; Lin H. W. ; Lu S. Y. Nano Energy 2019, 57, 1.
doi: 10.1016/j.nanoen.2018.12.018 |
103 |
Wang Q. ; Wei C. ; Li D. ; Guo W. ; Zhong D. ; Zhao Q. Microporous Mesoporous Mater. 2019, 286, 92.
doi: 10.1016/j.micromeso.2019.05.040 |
104 |
Li Y. ; Lu M. ; He P. ; Wu Y. ; Wang J. ; Chen D. ; Xu H. ; Gao J. ; Yao J. Chem. Asian J. 2019, 14 (9), 1590.
doi: 10.1002/asia.201900328 |
105 |
Kumar A. ; Bhattacharyya S. ACS Appl. Mater. Interfaces 2017, 9 (48), 41906.
doi: 10.1021/acsami.7b14096 |
106 |
Qiao H. ; Yang Y. ; Dai X. ; Zhao H. ; Yong J. ; Yu L. ; Luan X. ; Cui M. ; Zhang X. ; Huang X. Electrochim. Acta 2019, 318, 430.
doi: 10.1016/j.electacta.2019.06.084 |
107 |
Ma Y. ; Dai X. ; Liu M. ; Yong J. ; Qiao H. ; Jin A. ; Li Z. ; Huang X. ; Wang H. ; Zhang X. ACS Appl. Mater. Interfaces 2016, 8 (50), 34396.
doi: 10.1021/acsami.6b11821 |
108 |
Du L. ; Luo L. ; Feng Z. ; Engelhard M. ; Xie X. ; Han B. ; Sun J. ; Zhang J. ; Yin G. ; Wang C. ; et al Nano Energy 2017, 39, 245.
doi: 10.1016/j.nanoen.2017.07.006 |
109 |
Abdelkader-Fernández V. K. ; Fernandes D. M. ; Balula S. S. ; Cunha-Silva L. ; Pérez-Mendoza M. J. ; López-Garzón F. J. ; Pereira M. F. ; Freire C. ACS Appl. Energy Mater. 2019, 2 (3), 1854.
doi: 10.1021/acsaem.8b02010 |
110 |
Xie Z. ; Tang H. ; Wang Y. ChemElectroChem 2019, 6 (4), 1206.
doi: 10.1002/celc.201801106 |
111 |
Nadeem M. ; Yasin G. ; Bhatti M. H. ; Mehmood M. ; Arif M. ; Dai L. J. Power Sources 2018, 402, 34.
doi: 10.1016/j.jpowsour.2018.09.006 |
112 |
Hassan M. H. ; Soliman A. B. ; Elmehelmey W. A. ; Abugable A. A. ; Karakalos S. G. ; Elbahri M. ; Hassanien A. ; Alkordi M. H. Chem. Commun. 2019, 55 (1), 31.
doi: 10.1039/c8cc07120a |
[1] | 黄小雄, 马英杰, 智林杰. 超薄氮掺杂碳纳米片负载单原子镍用于高效电催化还原二氧化碳[J]. 物理化学学报, 2022, 38(2): 2011050 -0 . |
[2] | 杜亚东, 孟祥桐, 汪珍, 赵鑫, 邱介山. 石墨烯基二氧化碳电化学还原催化剂的研究进展[J]. 物理化学学报, 2022, 38(2): 2101009 -0 . |
[3] | 薛延荣, 王兴栋, 张向前, 方锦杰, 许志远, 张宇烽, 刘雪瑞, 刘梦园, 朱威, 庄仲滨. 具有经济性的碱性膜燃料电池氢气氧化反应催化剂[J]. 物理化学学报, 2021, 37(9): 2009103 -0 . |
[4] | 包玉菲, 冯立纲. PdNi/石墨烯气凝胶电催化甲酸氧化[J]. 物理化学学报, 2021, 37(9): 2008031 -0 . |
[5] | 李峥嵘, 申涛, 胡冶州, 陈科, 陆贇, 王得丽. 有序金属间化合物电催化剂在燃料电池中的应用进展[J]. 物理化学学报, 2021, 37(9): 2010029 -0 . |
[6] | 黄磊, Zaman Shahid, 王志同, 牛慧婷, 游波, 夏宝玉. 铂基空心纳米框架的合成及其在直接醇燃料电池中的应用[J]. 物理化学学报, 2021, 37(9): 2009035 -0 . |
[7] | 刘苗苗, 杨茅茂, 舒欣欣, 张进涛. 燃料电池碳基氧还原催化剂的设计与应用[J]. 物理化学学报, 2021, 37(9): 2007072 -0 . |
[8] | 丁亮, 唐堂, 胡劲松. 基于金属-氮-碳结构催化剂的质子交换膜燃料电池研究进展[J]. 物理化学学报, 2021, 37(9): 2010048 -0 . |
[9] | 梁嘉顺, 刘轩, 李箐. 提升燃料电池铂基催化剂稳定性的原理、策略与方法[J]. 物理化学学报, 2021, 37(9): 2010072 -0 . |
[10] | 李艳, 胡星盛, 黄静伟, 王磊, 佘厚德, 王其召. 铁基多相助催化剂光电化学水氧化研究进展[J]. 物理化学学报, 2021, 37(8): 2009022 -0 . |
[11] | 郝磊端, 孙振宇. 基于金属氧化物材料的二氧化碳电催化还原[J]. 物理化学学报, 2021, 37(7): 2009033 -0 . |
[12] | 秦睿, 王鹏彦, 林灿, 曹菲, 张金咏, 陈磊, 木士春. 过渡金属氮化物的活性起源、合成方法及电催化应用[J]. 物理化学学报, 2021, 37(7): 2009099 -0 . |
[13] | 赵康宁, 李潇, 苏东. 高熵纳米合金在电化学催化中的应用[J]. 物理化学学报, 2021, 37(7): 2009077 -0 . |
[14] | 高增强, 王聪勇, 李俊俊, 朱亚廷, 张志成, 胡文平. 导电金属有机框架材料在电催化中的成就,挑战和机遇[J]. 物理化学学报, 2021, 37(7): 2010025 -0 . |
[15] | 肖瑶, 裴煜, 胡一帆, 马汝广, 王德义, 王家成. 磷化钴封装在磷富集的三维多孔碳及其双功能氧电催化性能研究[J]. 物理化学学报, 2021, 37(7): 2009051 -0 . |
|