物理化学学报 >> 2021, Vol. 37 >> Issue (8): 2010073.doi: 10.3866/PKU.WHXB202010073
所属专题: 二维光催化材料
收稿日期:
2020-10-29
录用日期:
2020-12-02
发布日期:
2020-12-21
通讯作者:
曹少文
E-mail:swcao@whut.edu.cn
基金资助:
Han Li, Fang Li, Jiaguo Yu, Shaowen Cao()
Received:
2020-10-29
Accepted:
2020-12-02
Published:
2020-12-21
Contact:
Shaowen Cao
E-mail:swcao@whut.edu.cn
About author:
Shaowen Cao, Email: swcao@whut.edu.cnSupported by:
摘要:
本研究工作使用尿素作为前驱体,通过两步煅烧法得到具有较高比表面积(97 m2·g-1)的g-C3N4纳米片。然后,通过简单的水热法将FeNi层状双氢氧化物(FeNi-LDH)助催化剂负载到g-C3N4纳米片上,从而获得基于g-C3N4的二维/二维复合光催化剂。实验表明,在二维/二维FeNi-LDH/g-C3N4复合材料上,光催化还原二氧化碳生成甲醇的产率要远高于在纯g-C3N4上获得甲醇的产率。一系列表征结果证明,FeNi-LDH/g-C3N4复合光催化剂的光吸收得到了增强,同时FeNi-LDH/g-C3N4复合光催化剂对二氧化碳的吸附能力也得到了提高。更重要的是,FeNi-LDH的引入有效地抑制了光生电子和空穴的复合,进一步提高了g-C3N4的光催化二氧化碳还原活性。此外,通过改变用于光催化性能测试的FeNi-LDH的负载量,发现FeNi-LDH的最佳负载量为4% (质量分数),对应的甲醇生产率为1.64 μmol·h-1·g-1,是纯的g-C3N4的6倍。这项研究提供了一种有效的策略,即通过负载层状铁镍双金属氢氧化物作为助催化剂来提高g-C3N4的光催化二氧化碳还原活性。
MSC2000:
李瀚, 李芳, 余家国, 曹少文. 二维/二维FeNi-LDH/g-C3N4复合光催化剂用于促进CO2光还原反应[J]. 物理化学学报, 2021, 37(8): 2010073.
Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction[J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073.
1 |
Ye L. ; Jin X. ; Ji X. ; Liu C. ; Su Y. ; Xie H. ; Liu C. Chem. Eng. J. 2016, 291, 39.
doi: 10.1016/j.cej.2016.01.032 |
2 |
Liu X. ; Ye L. ; Liu S. ; Li Y. ; Ji X. Sci. Rep. 2016, 6, 38474.
doi: 10.1038/srep38474 |
3 |
Yu B. ; Zhou Y. ; Li P. ; Tu W. ; Li P. ; Tang L. ; Ye J. ; Zou Z. Nanoscale 2016, 8, 11870.
doi: 10.1039/c6nr02547a |
4 |
Xia P. ; Zhu B. ; Yu J. ; Cao S. ; Jaroniec M. J. Mater. Chem. A 2017, 5, 3230.
doi: 10.1039/c6ta08310b |
5 |
Liu J. ; Niu Y. ; He X. ; Qi J. ; Li X. J. Nanomater. 2016, 2016, 6012896.
doi: 10.1155/2016/6012896 |
6 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
7 |
Yu J. ; Wang K. ; Xiao W. ; Cheng B. Phys. Chem. Chem. Phys. 2014, 16, 11492.
doi: 10.1039/c4cp00133h |
8 | Huang Y. ; Fu M. ; He T. Acta Phys. -Chim. Sin. 2015, 31, 1145. |
黄艳; 傅敏; 贺涛; 物理化学学报, 2015, 31, 1145.
doi: 10.3866/PKU.WHXB201504015 |
|
9 |
Wang X. ; He J. ; Li J. ; Lu G. ; Dong F. ; Majima T. ; Zhu M. Appl. Catal. B 2020, 277, 119230.
doi: 10.1016/j.apcatb.2020.119230 |
10 |
Ye S. ; Wang R. ; Wu M.-Z. ; Yuan Y.-P. Appl. Surf. Sci. 2015, 358, 15.
doi: 10.1016/j.apsusc.2015.08.173 |
11 |
Xiang Q. ; Yu J. ; Jaroniec M. J. Phys. Chem. C 2011, 115, 7355.
doi: 10.1021/jp200953k |
12 |
Li J. ; Chen G. ; Yan J. ; Huang B. ; Cheng H. ; Lou Z. ; Li B. Appl. Catal. B 2020, 264, 118517.
doi: 10.1016/j.apcatb.2019.118517 |
13 |
Ge L. Mater. Lett. 2011, 65, 2652.
doi: 10.1016/j.matlet.2011.05.069 |
14 |
Akple M. S. ; Low J. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. ; Zhang J. Appl. Surf. Sci. 2015, 358, 196.
doi: 10.1016/j.apsusc.2015.08.250 |
15 |
Wang Y. ; Li Y. ; Cao S. ; Yu J. Chin. J. Catal. 2019, 40, 867.
doi: 10.1016/s1872-2067(19)63343-7 |
16 | Wang Y. ; Shen S. Acta Phys. -Chim. Sin. 2020, 36, 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36, 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
17 |
Bunekar N. ; Tsai T.-Y. ; Yu Y.-Z. Mater. Today-Proceed. 2016, 3, 1415.
doi: 10.1016/j.matpr.2016.04.023 |
18 |
Huang D. ; Ma J. ; Yu L. ; Wu D. ; Wang K. ; Yang M. ; Papoulis D. ; Komarneni S. Sep. Purif. Technol. 2015, 156, 789.
doi: 10.1016/j.seppur.2015.11.003 |
19 |
Nicotera I. ; Angjeli K. ; Coppola L. ; Enotiadis A. ; Pedicini R. ; Carbone A. ; Gournis D. Solid State Ionics 2015, 276, 40.
doi: 10.1016/j.ssi.2015.03.037 |
20 |
Li J. ; Zhang N. ; Ng D. H. L. J. Mater. Chem. A 2015, 3, 21106.
doi: 10.1039/c5ta04497a |
21 |
Qu T. ; Huang Q. ; Zhao Z.-B. J. Inorg. Mater. 2015, 30, 825.
doi: 10.15541/jim20140675 |
22 |
Liu Q. ; Fan C. ; Tang H. ; Sun X. ; Yang J. ; Cheng X. Appl. Surf. Sci. 2015, 358, 188.
doi: 10.1016/j.apsusc.2015.09.010 |
23 |
Yu W. ; Xu D. ; Peng T. J. Mater. Chem. A 2015, 3, 19936.
doi: 10.1039/c5ta05503b |
24 |
Yan J. ; Xu H. ; Xu Y. ; Wang C. ; Song Y. ; Xia J. ; Li H. J. Nanosci. Nanotechnol. 2014, 14, 6809.
doi: 10.1166/jnn.2014.8975 |
25 |
Min Y. L. ; Qi X. F. ; Xu Q. J. ; Chen Y. C. CrystEngComm 2014, 16, 1287.
doi: 10.1039/c3ce41964a |
26 |
Yu H. ; Xiao P. ; Wang P. ; Yu J. Appl. Catal. B 2016, 193, 217.
doi: 10.1016/j.apcatb.2016.04.028 |
27 |
Wang J. ; Heil T. ; Zhu B. ; Tung C.-W. ; Yu J. ; Chen H. M. ; Antonietti M. ; Cao S. ACS Nano 2020, 14, 8584.
doi: 10.1021/acsnano.0c02940 |
28 |
Sun K. ; Shen J. ; Liu Q. ; Tang H. ; Zhang M. ; Zulfiqar S. ; Lei C. Chin. J. Catal. 2020, 41, 72.
doi: 10.1016/s1872-2067(19)63430-3 |
29 |
Qi K. ; Lv W. ; Khan I. ; Liu S.-Y. Chin. J. Catal. 2020, 41, 114.
doi: 10.1016/s1872-2067(19)63459-5 |
30 |
Xu M. ; Han L. ; Dong S. ACS Appl. Mater. Interfaces 2013, 5, 12533.
doi: 10.1021/am4038307 |
31 |
He F. ; Zhu B. ; Cheng B. ; Yu J. ; Ho W. ; Macyk W. Appl. Catal. B 2020, 272, 119006.
doi: 10.1016/j.apcatb.2020.119006 |
32 |
Yin L. ; Yuan Y. P. ; Cao S. W. ; Zhang Z. ; Xue C. RSC Adv. 2014, 4, 6127.
doi: 10.1039/c3ra46362a |
33 |
Wang K. ; Li Q. ; Liu B. ; Cheng B. ; Ho W. ; Yu J. Appl. Catal. B 2015, 176, 44.
doi: 10.1016/j.apcatb.2015.03.045 |
34 |
Luo J. ; Lin Z. ; Zhao Y. ; Jiang S. ; Song S. Chin. J. Catal. 2020, 41, 122.
doi: 10.1016/s1872-2067(19)63490-x |
35 |
Shiraishi Y. ; Kanazawa S. ; Sugano Y. ; Tsukamoto D. ; Sakamoto H. ; Ichikawa S. ; Hirai T. ACS Catal. 2014, 4, 774.
doi: 10.1021/cs401208c |
36 | Li X. ; Wang B. ; Yin W. ; Di J. ; Xia J. ; Zhu W. ; Li H. Acta Phys. -Chim. Sin. 2020, 36, 1902001. |
李小为; 王彬; 尹文轩; 狄俊; 夏杰祥; 朱文帅; 李华明; 物理化学学报, 2020, 36, 1902001.
doi: 10.3866/PKU.WHXB201902001 |
|
37 |
Huang M. ; Yu J. ; Hu Q. ; Su W. ; Fan M. ; Li B. ; Dong L. Appl. Surf. Sci. 2016, 389, 1084.
doi: 10.1016/j.apsusc.2016.07.180 |
38 |
Wang P. ; Sun S. ; Zhang X. ; Ge X. ; Lu W. RSC Adv. 2016, 6, 33589.
doi: 10.1039/c5ra26890g |
39 |
Jiang J. ; Yu J. ; Cao S. J. Colloid Interface Sci. 2015, 461, 56.
doi: 10.1016/j.jcis.2015.08.076 |
40 | Cao D. ; Lu R. ; Yu A. Acta Phys. -Chim. Sin. 2019, 35, 442. |
曹丹丹; 吕荣; 于安池; 物理化学学报, 2019, 35, 442.
doi: 10.3866/PKU.WHXB201805163 |
|
41 |
Yamashita T. ; Hayes P. Appl. Surf. Sci. 2009, 255, 8194.
doi: 10.1016/j.apsusc.2009.04.153 |
42 |
Yan X. ; Xue C. ; Yang B. ; Yang G. Appl. Surf. Sci. 2017, 394, 248.
doi: 10.1016/j.apsusc.2016.10.077 |
43 |
Ran J. ; Yu J. ; Jaroniec M. Green Chem. 2011, 13, 2708.
doi: 10.1039/c1gc15465f |
44 |
Lu P. ; Liu Q. ; Xiong Y. ; Wang Q. ; Lei Y. ; Lu S. ; Lu L. ; Yao L. Electrochim. Acta 2015, 168, 148.
doi: 10.1016/j.electacta.2015.04.003 |
45 |
Liang Q. ; Li Z. ; Yu X. ; Huang Z.-H. ; Kang F. ; Yang Q.-H. Adv. Mater. 2015, 27, 4634.
doi: 10.1002/adma.201502057 |
46 |
Li H. ; Zhu B. ; Cao S. ; Yu J. Chem. Commun. 2020, 56, 5641.
doi: 10.1039/d0cc01338b |
47 |
Xu J. ; Wang G. ; Fan J. ; Liu B. ; Cao S. ; Yu J. J. Power Sources 2015, 274, 77.
doi: 10.1016/j.jpowsour.2014.10.033 |
48 |
Aquino C. C. ; Richner G. ; Kimling M. C. ; Chen D. ; Puxty G. ; Feron P. H. M. ; Caruso R. A. J. Phys. Chem. C 2013, 117, 9747.
doi: 10.1021/jp312118e |
49 |
Serna-Guerrero R. ; Belmabkhout Y. ; Sayari A. Chem. Eng. J. 2010, 161, 173.
doi: 10.1016/j.cej.2010.04.024 |
50 |
Xia Y. ; Tian Z. ; Heil T. ; Meng A. ; Cheng B. ; Cao S. ; Yu J. ; Antonietti M. Joule 2019, 3, 2792.
doi: 10.1016/j.joule.2019.08.011 |
51 |
Huang Q. ; Yu J. ; Cao S. ; Cui C. ; Cheng B. Appl. Surf. Sci. 2015, 358, 350.
doi: 10.1016/j.apsusc.2015.07.082 |
52 | Wang L. ; Zhu C. ; Yin L. ; Huang W. Acta Phys. -Chim. Sin. 2020, 36, 1907001. |
王梁; 朱澄鹭; 殷丽莎; 黄维; 物理化学学报, 2020, 36, 1907001.
doi: 10.3866/PKU.WHXB201907001 |
|
53 |
Cao S. ; Jiang J. ; Zhu B. ; Yu J. Phys. Chem. Chem. Phys. 2016, 18, 19457.
doi: 10.1039/c6cp02832b |
54 |
Xiao D. ; Dai K. ; Qu Y. ; Yin Y. ; Chen H. Appl. Surf. Sci. 2015, 358, 181.
doi: 10.1016/j.apsusc.2015.09.042 |
55 |
Thaweesak S. ; Lyu M. ; Peerakiatkhajohn P. ; Butburee T. ; Luo B. ; Chen H. ; Wang L. Appl. Catal. B 2017, 202, 184.
doi: 10.1016/j.apcatb.2016.09.022 |
56 |
Wang H. ; Jiang S. ; Chen S. ; Li D. ; Zhang X. ; Shao W. ; Sun X. ; Xie J. ; Zhao Z. ; Zhang Q. ; et al Adv. Mater. 2016, 28, 6940.
doi: 10.1002/adma.201601413 |
57 | Pan Z. ; Liu M. ; Niu P. ; Guo F. ; Fu X. ; Wang X. Acta Phys. -Chim. Sin. 2020, 36, 1906014. |
潘志明; 刘明辉; 牛萍萍; 郭芳松; 付贤智; 王心晨; 物理化学学报, 2020, 36, 1906014.
doi: 10.3866/PKU.WHXB201906014 |
|
58 |
He F. ; Chen G. ; Zhou Y. ; Yu Y. G. ; Li L. ; Hao S. ; Liu B. J. Mater. Chem. A 2016, 4, 3822.
doi: 10.1039/c6ta00497k |
59 |
Liu F. ; Yu J. ; Tu G. ; Qu L. ; Xiao J. ; Liu Y. ; Wang L. ; Lei J. ; Zhang J. Appl. Catal. B 2017, 201, 1.
doi: 10.1016/j.apcatb.2016.08.001 |
60 |
Reli M. ; Huo P. ; Sihor M. ; Ambrozova N. ; Troppova I. ; Matejova L. ; Lang J. ; Svoboda L. ; Kustrowski P. ; Ritz M. ; et al J. Phys. Chem. A 2016, 120, 8564.
doi: 10.1021/acs.jpca.6b07236 |
61 |
Chen Q. ; Li S. ; Xu H. ; Wang G. ; Qu Y. ; Zhu P. ; Wang D. Chin. J. Catal. 2020, 41, 514.
doi: 10.1016/s1872-2067(19)63497-2 |
62 | Huang J. ; Du J. ; Du H. ; Xu G. ; Yuan Y. Acta Phys. -Chim. Sin. 2020, 36, 1905056. |
黄娟娟; 杜建梅; 杜海威; 徐更生; 袁玉鹏; 物理化学学报, 2020, 36, 1905056.
doi: 10.3866/PKU.WHXB201905056 |
|
63 |
Mei F. ; Li Z. ; Dai K. ; Zhang J. ; Liang C. Chin. J. Catal. 2020, 41, 41.
doi: 10.1016/s1872-2067(19)63389-9 |
64 |
Chuang C.-C. ; Wu W.-C. ; Huang M.-C. ; Huang I. C. ; Lin J.-L. J. Catal. 1999, 185, 423.
doi: 10.1006/jcat.1999.2516 |
65 |
Raskó J. ; Kecskés T. ; Kiss J. J. Catal. 2004, 226, 183.
doi: 10.1016/j.jcat.2004.05.024 |
66 |
Chen M. T. ; Lien C. F. ; Lifen Liao A. ; Lin J. L. J. Phys. Chem. B 2003, 107, 3837.
doi: 10.1021/jp0220884 |
67 |
Liao L. F. ; Wu W. C. ; Chen C. Y. ; Lin J. L. J. Phys. Chem. B 2001, 105, 7678.
doi: 10.1021/jp003541j |
68 |
Wu W. ; Bhattacharyya K. ; Gray K. ; Weitz E. J. Phys. Chem. C 2013, 117, 20643.
doi: 10.1021/jp405902a |
69 |
Collins S. E. ; Baltanas M. A. ; Bonivardi A. L. J. Catal. 2004, 226, 410.
doi: 10.1016/j.jcat.2004.06.012 |
70 |
Arana J. ; Cabo C. G. I. ; Dona-Rodriguez J. M. ; Gonzalez-Diaz O. ; Heffera-Melian J. A. ; Perez-Pena J. Appl. Surf. Sci. 2004, 239, 60.
doi: 10.1016/S0169-4332(04)00755-X |
71 |
Liu L. ; Zhao C. ; Li Y. J. Phys. Chem. C 2012, 116, 7904.
doi: 10.1021/jp300932b |
72 |
Mao J. ; Ye L. ; Li K. ; Zhang X. ; Liu J. ; Peng T. ; Zan L. Appl. Catal. B 2014, 144, 855.
doi: 10.1016/j.apcatb.2013.08.027 |
73 |
Li K. ; Peng T. ; Ying Z. ; Song S. ; Zhang J. Appl. Catal. B 2016, 180, 130.
doi: 10.1016/j.apcatb.2015.06.022 |
74 |
Zhao H. ; Liu L. ; Andino J. M. ; Li Y. J. Mater. Chem. A 2013, 1, 8209.
doi: 10.1039/c3ta11226h |
75 |
Busca G. ; Lamotte J. ; Lavalley J. C. ; Lorenzelli V. J. Am. Chem. Soc. 1987, 109, 5197.
doi: 10.1021/ja00251a025 |
76 |
Boccuzzi F. ; Chiorino A. ; Manzoli M. J. Power Sources 2003, 118, 304.
doi: 10.1016/S0378-7753(03)00075-2 |
[1] | 黄悦, 梅飞飞, 张金锋, 代凯, Graham Dawson. 一维/二维W18O49/多孔g-C3N4梯形异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2108028 - . |
[2] | 雷卓楠, 马心怡, 胡晓云, 樊君, 刘恩周. Ni2P-NiS双助剂促进g-C3N4光催化产氢动力学[J]. 物理化学学报, 2022, 38(7): 2110049 - . |
[3] | 刘珊池, 王凯, 杨梦雪, 靳治良. Mn0.2Cd0.8S@CoAl LDH S-型异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2109023 - . |
[4] | 沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫. 高分散Co0.2Ni1.6Fe0.2P助催化剂改性P掺杂g-C3N4纳米片高效光催化析氢的研究[J]. 物理化学学报, 2022, 38(7): 2110014 - . |
[5] | 韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋. 反蛋白石结构ZnO@PDA用于增强光催化产H2O2性能[J]. 物理化学学报, 2022, 38(7): 2112037 - . |
[6] | 周亮, 李云锋, 张永康, 秋列维, 邢艳. 具有高效界面电荷转移的0D/2D Bi4V2O11/g-C3N4梯形异质结的设计合成及抗生素降解性能研究[J]. 物理化学学报, 2022, 38(7): 2112027 - . |
[7] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[8] | 熊壮, 侯乙东, 员汝胜, 丁正新, 王伟俊, 汪思波. 空心NiCo2S4纳米球助催化剂担载ZnIn2S4纳米片用于可见光催化制氢[J]. 物理化学学报, 2022, 38(7): 2111021 - . |
[9] | 邹菁云, 高冰, 张小品, 唐磊, 冯思敏, 金赫华, 刘碧录, 成会明. 一维碳纳米管/二维二硫化钼混合维度异质结的原位制备及其电荷转移性能[J]. 物理化学学报, 2022, 38(5): 2008037 - . |
[10] | 赵娜, 彭静, 王建平, 翟茂林. 羧酸根功能化的PVP-CdS同质结及其高效的光催化析氢性能[J]. 物理化学学报, 2022, 38(4): 2004046 - . |
[11] | 李红英, 龚海明, 靳治良. In2O3修饰三维纳米花MoSx构建S型异质结用于高效光催化产氢[J]. 物理化学学报, 2022, 38(12): 2201037 - . |
[12] | 何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11): 2201021 - . |
[13] | 马来鹏, 任文才, 成会明. 表面电荷转移掺杂石墨烯的研究进展[J]. 物理化学学报, 2022, 38(1): 2012080 - . |
[14] | 周易, 欧阳威龙, 王岳军, 王海强, 吴忠标. 核壳结构NH2-UiO-66@TiO2的制备及其可见光下的甲苯降解性能研究[J]. 物理化学学报, 2021, 37(8): 2009045 - . |
[15] | 李艳, 胡星盛, 黄静伟, 王磊, 佘厚德, 王其召. 铁基多相助催化剂光电化学水氧化研究进展[J]. 物理化学学报, 2021, 37(8): 2009022 - . |
|