物理化学学报 >> 2022, Vol. 38 >> Issue (7): 2112027.doi: 10.3866/PKU.WHXB202112027

所属专题: 异质结光催化材料

论文 上一篇    下一篇

具有高效界面电荷转移的0D/2D Bi4V2O11/g-C3N4梯形异质结的设计合成及抗生素降解性能研究

周亮1, 李云锋1,*(), 张永康1, 秋列维1,*(), 邢艳2   

  1. 1 西安工程大学环境与化学工程学院,纺织化工助剂西安重点实验室,西安 710048
    2 东北师范大学化学学院,吉林省新能源材料重点实验室,长春 130024
  • 收稿日期:2021-12-20 录用日期:2022-01-17 发布日期:2022-01-20
  • 通讯作者: 李云锋,秋列维 E-mail:liyf377@nenu.edu.cn;20190607@xpu.edu.cn
  • 基金资助:
    国家自然科学基金(22008185);国家自然科学基金(21872023);陕西省自然科学基础研究项目(2021JQ-669);西安工程大学大学生创新创业训练计划项目(202110709042);西安工程大学研究生创新基金(chx2021020)

A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation

Liang Zhou1, Yunfeng Li1,*(), Yongkang Zhang1, Liewei Qiu1,*(), Yan Xing2   

  1. 1 College of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, China
    2 Jilin Provincial Key Laboratory of Advanced Energy Materials, Department of Chemistry, Northeast Normal University, Changchun 130024, China
  • Received:2021-12-20 Accepted:2022-01-17 Published:2022-01-20
  • Contact: Yunfeng Li,Liewei Qiu E-mail:liyf377@nenu.edu.cn;20190607@xpu.edu.cn
  • About author:Email: 20190607@xpu.edu.cn (L.Q.)
    Email: liyf377@nenu.edu.cn; Tel.: +86-13134451412 (Y.L.)
  • Supported by:
    the National Natural Science Foundation of China(22008185);the National Natural Science Foundation of China(21872023);Natural Science Basic Research Program of Shaanxi Province(2021JQ-669);College Students' Innovative Training Plan Program of Xi'an Polytechnic University(202110709042);Graduate Innovation Fund Project of Xi'an Polytechnic University(chx2021020)

摘要:

随着工业技术的飞速发展,大量有机污染物被应用于生活的各个领域,由此带来了严重的环境问题。众所周知,半导体光催化技术是一种有效且环境友好的降解去除典型污染物的方法,而光催化剂在该技术的应用中起着关键作用。因此,在光催化污染物降解领域,人们已经尝试研究了各种半导体材料。其中石墨相氮化碳(g-C3N4)是近年来公认的“明星”材料之一。因其独特的二维层状结构和良好的可见光响应而引起了人们的极大兴趣。由于带隙较窄(~2.7 eV)、能带结构可调以及良好的物理化学稳定性,g-C3N4对太阳光谱的吸收可达450 nm,具有一定的可见光光催化性能。然而,g-C3N4在去除抗生素和染料方面的降解效率仍然存在不足,例如光生电荷的快速复合以及空穴的氧化能力弱等。为了优化这种有前景的光催化材料,人们尝试了多种方法来改善g-C3N4的电子能带结构,例如金属/非金属元素掺杂、形貌调控和官能团修饰等。最近,人们提出了由两种N型半导体光催化剂组成的梯形异质结理念,它可以利用半导体材料更正的价带和更负的导带。相关结果表明,构筑梯形异质结是提高g-C3N4光催化活性的最有效方法之一。因此,本文通过简单的原位溶剂热生长法制备了新型0D/2D Bi4V2O11/g-C3N4梯形异质结光催化剂。Bi4V2O11/g-C3N4复合材料对去除土霉素(OTC)和活性红染料展示出了优异的光催化活性。尤其是BVCN-50复合材料对OTC和活性红的降解效率高达74.1%和84.2%,该过程的主要活性物种为·O2-。大幅增强的光催化性能归因于Bi4V2O11和g-C3N4之间形成的梯形异质结保持了光催化体系的强氧化还原能力(Bi4V2O11的强氧化能力和g-C3N4的强还原能力),并促进了光生电荷的空间分离。此外,金属Bi0的表面等离子共振效应可以拓宽异质结系统的光吸收范围。此外,基于高效液相色谱-质谱联用(LC-MS)分析,我们研究了OTC降解过程中可能的中间体和降解路径。这项工作为设计和制备g-C3N4基梯形异质结用于抗生素和活性染料降解提供了一种新的策略。

关键词: 梯形异质结, 光催化, 土霉素, 石墨相氮化碳

Abstract:

With the rapid development of industrial technology, a large number of organic pollutants are routinely released into the environment, which has caused serious problems. Semiconductor photocatalysis is an environmentally-friendly and effective method to degrade and remove typical pollutants, and photocatalysts play a key role in the application of this technology. Therefore, various semiconductor materials have been tried and used in the field of pollutant removal. Graphite carbon nitride (g-C3N4) has attracted great interest because of its two-dimensional layered structure and good visible light response range. Owing to a narrow bandgap, adjustable band structure, and high physicochemical stability, g-C3N4 absorbs wavelengths up to 450 nm in the visible spectrum, leading to an opportunity for visible-light photocatalytic performance. Nevertheless, there are still some drawbacks that limit the photocatalytic efficiency of g-C3N4 in the removal of antibiotics and dyes under visible light, such as the rapid recombination of photoinduced charges and the weak oxidation capacity of holes. To advance this promising photocatalytic material, multiple methods have been tried to optimize the electronic band structure of g-C3N4, such as doping with various elements, morphology control, and functional group modification. Recently, a novel type of Step-scheme (S-scheme) heterojunction composed of two n-type semiconductor photocatalysts has been proposed, which can utilize a more positive valance band and a more negative conduction band. It was demonstrated that the formation of S-scheme heterojunctions is a valid way to increase photocatalytic activity of g-C3N4. Herein, novel 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunctions were prepared by a simple in situ solvothermal growth method. The Bi4V2O11/g-C3N4 composites displayed a high photocatalytic activity through the removal of oxytetracycline (OTC) and Reactive Red 2. In particular, the BVCN-50 composite showed the highest degradation efficiency for OTC of 74.1% and for Reactive Red 2 of 84.2% with ·O2- as the primary active species. This highly improved photocatalytic performance can be ascribed to the generation of S-scheme heterojunctions, which provides for a high redox capacity of the heterojunction system (strong oxidative ability of Bi4V2O11 and strong reductive capacity of g-C3N4) and facilitates the space separation of photo-generated charges. Moreover, the surface plasmon resonance effect of metallic Bi0 broadens the light utilization range of the heterojunction system. In addition, the possible degradation pathway and intermediates throughout the degradation process of OTC based on liquid chromatograph mass spectrometer (LC-MS) analysis were also studied. This work provides a novel tactic for the design and fabrication of g-C3N4-based S-scheme heterojunctions with enhanced photocatalytic performance.

Key words: S-scheme, Photocatalysis, Oxytetracycline, g-C3N4

MSC2000: 

  • O643