物理化学学报 >> 2022, Vol. 38 >> Issue (12): 2207006.doi: 10.3866/PKU.WHXB202207006
所属专题: 纪念傅鹰先生诞辰120周年
曹冲1, 张裴2,*(), 曹立冬1, 刘铭鑫1, 宋玉莹1, 陈鹏2, 黄啟良1,*(
), 韩布兴2,*(
)
收稿日期:
2022-07-05
录用日期:
2022-08-02
发布日期:
2022-08-12
通讯作者:
张裴,黄啟良,韩布兴
E-mail:zhangpei@iccas.ac.cn;qlhuang@ippcaas.cn;hanbx@iccas.ac.cn
基金资助:
Chong Cao1, Pei Zhang2,*(), Lidong Cao1, Mingxin Liu1, Yuying Song1, Peng Chen2, Qiliang Huang1,*(
), Buxing Han2,*(
)
Received:
2022-07-05
Accepted:
2022-08-02
Published:
2022-08-12
Contact:
Pei Zhang,Qiliang Huang,Buxing Han
E-mail:zhangpei@iccas.ac.cn;qlhuang@ippcaas.cn;hanbx@iccas.ac.cn
About author:
Buxing Han, Email: hanbx@iccas.ac.cn (B.H.)Supported by:
摘要:
农药液滴在靶标植物叶面的动态沉积对于提高农药利用率具有重要的意义,特别是在超疏水植物叶面的动态沉积。在本文中,我们利用生物基表面活性剂和甘油之间的氢键作用来增强液滴在超疏水植物叶面的有效沉积。在较低浓度的山梨醇-烷基胺表面活性剂溶液中,添加0.001%的甘油,可有效抑制液滴在不同超疏水/疏水植物叶片表面的弹跳和飞溅行为。结果表明,甘油的加入并没有显著改变山梨醇-烷基胺表面活性剂溶液的表面张力、粘度和聚集体的形态。核磁共振波谱(DOSY)显示,甘油加速了山梨醇-烷基胺表面活性剂分子的扩散速度。利用分子动力学模拟,对山梨醇-烷基胺表面活性剂/甘油体系的能量演化及表面活性剂相对于固体表面距离的分布进行了研究。这项目工作不仅为抑制液滴在植物叶面的弹跳飞溅提供了一种建设性的方法,而且为选择农用表面活性剂提供了理论基础。
:
曹冲, 张裴, 曹立冬, 刘铭鑫, 宋玉莹, 陈鹏, 黄啟良, 韩布兴. 液滴在超疏水植物叶面的沉积:实验和分子动力学模拟[J]. 物理化学学报, 2022, 38(12): 2207006.
Chong Cao, Pei Zhang, Lidong Cao, Mingxin Liu, Yuying Song, Peng Chen, Qiliang Huang, Buxing Han. Experimental and Molecular Dynamic Simulation of Droplet Deposition on Superhydrophobic Plant Leaf Surfaces[J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2207006.
Fig 1
Dynamic behaviors of high-speed drops impacting on superhydrophobic cabbage (Brassica oleracea L.) leaf surfaces. (a) Photograph of a cabbage leaf surface. (b) Scanning electron microscope (SEM) of the cabbage leaf surface. (c) Water contact angle on the cabbage leaf surface. (d–e) The water and 0.001% (w) glycerol droplets impacting the cabbage leaf surface showed splash and rebound. (f) The impact dynamic of droplet containing surfactant SSAS-C12 partly inhibited rebound but still splash or breakup. (g) The rebound and splash were substantially depressed by SSAS-C12/glycerol additive."
Fig 2
Dynamic behaviors of high-speed drops impacting on various leaf surfaces. The first column showed three superhydrophobic/hydrophobic plants leaves. The next column were the water contact angle and microscopic structure of the leaves obtained by SEM. The right column contained the snapshots of droplet impacts on the leaves surface. (a) Green onion (Allium fistulosum L.) leaf surface; (b) Quinoa (Chenopodium album L.) leaf surface; (c) Citrus (citrus L.) leaf surface."
Fig 3
The dynamic surface tension and impact behavior of SSAS-C12, glycerol, and SSAS-C12/glycerol binary additive. (a) Detailed normalized maximum contact diameter as a function of time for 0.25% (w) SSAS-C12, 0.001% (w) glycerol, and SSAS-C12/glycerol binary additive. (b) The dynamic surface tension of SSAS-C12, glycerol, and SSAS-C12/glycerol binary additive. (c) Phase diagram of the dynamic behaviors of SSAS-C12/glycerol droplet impacting on a cabbage leaf surface with different inclined angles."
Fig 5
MD simulations of surfactants with different hydroxy diffusion behaviors on the solid surface with glycerol. (a) The time sequence of typical snapshots of SSAS-C12/glycerol diffusion dynamics. (b) The time sequence of typical snapshots of DSSAS-C12/glycerol diffusion dynamics. (c) The time sequence of typical snapshots of BAPO-C12/glycerol diffusion dynamics. (d) Energy evolution of the surfactant/glycerol systems. (e) The distribution of surfactant relative to the distance from the solid surface for the three surfactant/glycerol systems."
Fig 6
Schematic illustration for enhancing the droplet impact deposition on a superhydrophobic leaf surface by SSAS-C12/glycerol binary additive. (a) Interactions between SSAS-C12 and glycerol. (b1–b3) Illustration for water and glycerol droplets dynamic impact behavior. (c1–c3) Illustration for SSAS-C12 droplets dynamic impact behavior. (d1–d3) Illustration for SSAS-C12/glycerol binary additive droplets dynamic impact behavior."
1 |
Lamberth C. ; Jeanmart S. ; Luksch T. ; Plant A. Science 2013, 341 (6147), 742.
doi: 10.1126/science.123722 |
2 |
Wirth W. ; Storp S. ; Jacobsen W. Pestic. Sci. 1991, 33 (4), 411.
doi: 10.1002/ps.2780330403 |
3 |
He L. ; Xi S. ; Ding L. ; Li B. ; Mu W. ; Li P. ; Liu F. ACS Nano 2022, 16, 1318.
doi: 10.1021/acsnano.1c09221 |
4 |
He L. ; Ding L. ; Li B. ; Mu W. ; Li P. ; Liu F. ACS Appl. Mater. Interfaces 2021, 13 (32), 38018.
doi: 10.1021/acsami.1c07109 |
5 | Chen Z. ; Tang Y. ; Lü Z. ; Meng X. ; Liang Q. ; Feng J. Acta Phys. -Chim. Sin. 2022, 38, 2205053. |
陈志洋; 唐雅婷; 吕泽; 孟霄汉; 梁前伟; 冯建国; 物理化学学报, 2022, 38, 2205053.
doi: 10.3866/PKU.WHXB202205053 |
|
6 |
Damak M. ; Hyder M. ; Varanasi K. Nat. Commun., 2016, 7, 12560.
doi: 10.1038/ncomms12560 |
7 |
Ma Y. ; Gao Y. ; Zhao K. ; Zhang H. ; Li Z. ; Du F. ; Hu J. ACS Appl. Mater. Interfaces 2020, 12 (44), 50126.
doi: 10.1021/acsami.0c13066 |
8 |
Song Y. ; Cao C. ; Liu K. ; Huang J. ; Zheng L. ; Cao L. ; Li F. ; Zhao P. ; Huang Q. ACS Sustain. Chem. Eng. 2020, 8 (34), 12911.
doi: 10.1021/acssuschemeng.0c03396 |
9 |
Liu B. ; Fan Y. ; Li H. ; Zhao W. ; Luo S. ; Wang H. ; Guan B. ; Li Q. ; Yue J. ; Dong Z. ; et al Adv. Funct. Mater. 2021, 31 (5), 2006606.
doi: 10.1002/adfm.202006606 |
10 |
Fenner K. ; Canonica S. ; Wackett L. P. ; Elsner M. Science 2013, 314 (6147), 752.
doi: 10.1126/science.1236281 |
11 |
Meng Y. ; Li Z. ; Xie C. ; Gao Y. ; Yu X. ; Zhang H. ; Li H. ; Hu J. Cell Rep. Phys. Sci. 2022, 3 (4), 100810.
doi: 10.1016/j.xcrp.2022.100810 |
12 |
Song M. ; Hu D. ; Zheng X. ; Wang L. ; Yu Z. ; An W. ; Na R. ; Li C. ; Li N. ; Lu Z. ; et al ACS Nano 2019, 13 (7), 7966.
doi: 10.1021/acsnano.9b02457 |
13 |
Luo J. ; Gao Y. ; Liu Y. ; Huang X. ; Zhang D ; Cao H. ; Jing T. ; Liu F. ; Li B. ACS Nano 2021, 15 (9), 14598.
doi: 10.1021/acsnano.1c04317 |
14 |
Yarin A. L. Annu. Rev. Fluid Mech., 2006, 38, 159.
doi: 10.1146/annurev.fluid.38.050304.092144 |
15 |
Bolleddula D. A. ; Berchielli A. ; Aliseda A. Adv. Colloid Interface Sci. 2010, 159 (2), 144.
doi: 10.1016/j.cis.2010.06.003 |
16 |
Lee J. B. ; Lee S. H. Langmuir 2011, 27 (11), 6565.
doi: 10.1021/la104829x |
17 |
Josserand C. ; Thoroddsen S. T. Annu. Rev. Fluid Mech., 2016, 48, 365.
doi: 10.1146/annurev-fluid-122414-034401 |
18 |
Bergeron V. ; Bonn D. ; Martin J. Y. ; Vovelle L. Nature 2000, 405 (6788), 772.
doi: 10.1038/35015525 |
19 |
Song M. ; Ju J. ; Luo S. ; Han Y. ; Dong Z. ; Wang Y. ; Gu Z. ; Zhang L. ; Hao R. ; Jiang L. Sci. Adv. 2017, 3 (3), e1602188.
doi: 10.1126/sciadv.1602188 |
20 | Liu T. ; Xue F. ; Yi P. ; Xia Z. ; Dong J. ; Li X. Acta Phys. -Chim. Sin. 2020, 36 (10), 1910004. |
刘同庆; 薛芳芳; 易萍; 夏志宇; 董金凤; 李学丰; 物理化学学报, 2020, 36 (10), 1910004.
doi: 10.3866/PKU.WHXB201910004 |
|
21 |
Spanoghe P. ; De Schampheleire M. ; Van der Meeren P. ; Steurbaut W. Pest Manag. Sci., 2007, 63, 4.
doi: 10.1002/ps.1321 |
22 |
Castro M. J. L. ; Ojeda C. ; Cirelli A. F. Environ. Chem. Lett., 2014, 12, 85.
doi: 10.1007/s10311-013-0432-4 |
23 |
Zhang P. ; Ma J. ; Kang X. ; Liu H. ; Chen C. ; Zhang Z. ; Zhang J. ; Han B. Chem. Commun. 2017, 53 (13), 2162.
doi: 10.1039/C6CC10122D |
24 |
Zhang L. ; Zhang X. ; Zhang P. ; Zhang Z. ; Liu S. ; Han B. Colloids Surf. A, 2018, 553, 225.
doi: 10.1016/j.colsurfa.2018.05.055 |
25 |
Abraham M. J. ; Murtola T. ; Schulz R. ; Páll S. ; Smith J. C. ; Hess B. ; Lindahl E. SoftwareX, 2015, 1, 19.
doi: 10.1016/j.softx.2015.06.001 |
26 |
Marrink S. ; Risselada J. ; Yefimov S. ; Tieleman P. ; de Vries A. J. Phys. Chem. B 2007, 111 (27), 7812.
doi: 10.1021/jp071097f |
27 |
Eglinton G. ; Hamilton R. J. Science 1967, 156 (3780), 1322.
doi: 10.1126/science.156.3780.1322 |
28 |
Sutter E. Can. J. Bot., 1984, 62, 74.
doi: 10.1139/b84-012 |
29 |
Hoffman H. ; Sijs R. ; Goede T. D. ; Bonn D. Phys. Rev. Fluid., 2021, 6, 033601.
doi: 10.1103/PhysRevFluids.6.033601 |
30 |
Li H. ; Liu Z. ; Li C. ; Feng Q. ; Liu Y. ; Li Q. ; Dong Z. ; Wang Y. ; Jiang L. J. Mater. Chem. A 2020, 8 (34), 17392.
doi: 10.1039/D0TA06683D |
31 |
Luo S. ; Chen Z. ; Dong Z. ; Fan Y. ; Chen Y. ; Liu B. ; Yu C. ; Li C. ; Dai H. ; Li H. ; et al Adv. Mater. 2019, 31 (41), 1904475.
doi: 10.1002/adma.201904475 |
32 |
Cabrita E. J. ; Berger S. Magn. Reson. Chem. 2001, 39 (suppl. 1), S142.
doi: 10.1002/mrc.917 |
33 |
Zanatta M. ; Antunes V. U. ; Tormena C. F. ; Dupont J. ; Dos Santos F. P. Phys. Chem. Chem. Phys. 2019, 21 (5), 2567.
doi: 10.1039/C8CP07071G |
34 | Zhang C. ; Lai L. Acta Phys. -Chim. Sin. 2020, 36 (1), 1907053. |
张长胜; 来鲁华; 物理化学学报, 2020, 36 (1), 1907053.
doi: 10.3866/PKU.WHXB201907053 |
[1] | 李若宁, 张雪, 薛娜, 李杰, 吴天昊, 徐榛, 王一帆, 李娜, 唐浩, 侯士敏, 王永锋. Ag(111)表面Ag配位结构的分等级组装[J]. 物理化学学报, 2022, 38(8): 2011060 - . |
[2] | 李宇明, 刘海超. 负载Pt-WOx催化剂上甘油选择氢解合成1, 3-丙二醇[J]. 物理化学学报, 2022, 38(10): 2207014 - . |
[3] | 高学庆, 杨树姣, 张伟, 曹睿. 胺和水插层磷酸锰仿生模拟氢键网络用于电催化水氧化[J]. 物理化学学报, 2021, 37(7): 2007031 - . |
[4] | 吴智伟, 丁伟璐, 张雅琴, 王艳磊, 何宏艳. 咪唑类离子液体与酪氨酸相互作用及机理的密度泛函理论研究[J]. 物理化学学报, 2021, 37(10): 2002021 - . |
[5] | 陈文琼, 关永吉, 张姣, 裴俊捷, 张晓萍, 邓友全. 外电场作用下离子液体振动光谱变化的分子动力学模拟研究[J]. 物理化学学报, 2021, 37(10): 2001004 - . |
[6] | 刘小龙, 王强, 王超, 徐君, 邓风. Silicalite-1分子筛氢键诱导晶化机制的固体核磁共振研究[J]. 物理化学学报, 2020, 36(4): 1905035 - . |
[7] | 李玉红,吴新平,刘聪,王萌,宋本腾,郁桂云,杨刚,侯文华,龚学庆,彭路明. 部分还原二氧化钛的NMR和EPR研究[J]. 物理化学学报, 2020, 36(4): 1905021 - . |
[8] | 王粉粉, 王芃, 牛洪瑶, 余莹凤, 孙平川. 固体NMR研究PAA/PEO共混物中氢键相互作用与结构演化[J]. 物理化学学报, 2020, 36(4): 1912016 - . |
[9] | 刘璐, 徐玉萍, 陈霞, 洪梅, 佟静. 1-烷基-3-甲基咪唑氯化物焓变的热重分析[J]. 物理化学学报, 2020, 36(11): 2004014 - . |
[10] | 胡媛媛,王从洋. 双金属促进的均相碳氢键活化反应[J]. 物理化学学报, 2019, 35(9): 913 -922 . |
[11] | 朱月路,赵鑫阳,吴谦,陈颖,赵劲. 多功能氧酰胺导向基在碳氢键活化反应中的研究进展[J]. 物理化学学报, 2019, 35(9): 989 -1004 . |
[12] | 王庆兵,郭政伟,陈弓,何刚. 1, 1'-双(二苯基膦基)二茂铁介导的芳烃碳氢键芳基化反应制备联芳基骨架[J]. 物理化学学报, 2019, 35(9): 1021 -1026 . |
[13] | 张涛,仇运广,罗启超,程曦,赵丽芬,严昕,彭浡,蒋华良,阳怀宇. 钙离子和镁离子浓度变化对磷脂酰乙醇胺-磷脂酰甘油双分子层膜的影响[J]. 物理化学学报, 2019, 35(8): 840 -849 . |
[14] | 许谢君,肖兴庆,徐首红,刘洪来. 亮氨酸拉链型脂肽对脂质体温敏性调节的分子模拟[J]. 物理化学学报, 2019, 35(6): 598 -606 . |
[15] | 潘明光,赵永升,曾小勤,邹建新. 偶氮苯基型离子液体溶液对空气中湿度的变色响应[J]. 物理化学学报, 2019, 35(6): 624 -629 . |
|